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SAN FRANCISCO, CAL,
PREFACE

TuEe discovery of the great law of nature, the law of gravitation, by
NEwrox, prepared the way for the brilliant achievements which have
distinguished the history of astronomical science. A first essential, how-
ever, to the solution of those recondite problems which were to exhibit
the effect of the mutual attraction of the bodies of our system, was the
development of the infinitesimal calculus; and the labors of those who
devoted themselves to pure analysis have contributed a most important
part in the attainment of the high degree of perfection which character-
izes the results of astronomical investigations. Of the earlier efforts to
develop the great results following from the law of gravitation, those of
EULER stand pre-eminent, and the memoirs which he published have,
in reality, furnished the germ of all subsequent investigations in
celestial mechanics. In this connection also the names of BErNOUILLI,
Crarravut, and D’ALEMBERT deserve the most honorable mention as
having contributed also, in a high degree, to give direction to the inves-
tigations which were to unfold so many mysteries of nature. By means
of the researches thus inaugurated, the great problems of mechanics
were successfully solved, many beautiful theorems relating to the planet-
ary motions demonstrated, and many useful formulee developed.

It is true, however, that in thé early stage of the science methods
were developed which have since been found to be impracticable, even
if not erroneous; still, enough was effected to direct attention in the
proper channel, and to prepare the way for the more complete labors of
LaAcraNGE and Larrace. The genius and the analytical skill of these
extraordinary men gave to the progress of Theoretical Astronomy the
most rapid strides; and the intricate investigations which they success-
fully performed, served constantly to educe new discoveries, so that of

all the problems relating to the mutual attraction of the several planets
3
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4 PREFACE.

but little more remained to be accomplished by their successors than to
develop and simplify the methods which they made known, and to intro-
duce such modifications as should be indicated by experience or rendered
possible by the latest discoveries in the domain of pure analysis.

The problem of determining the elements of the orbit of a comet
moving in a parabola, by means of observed places, which had been
considered by NrwroN, EUuLER, BoscovicE, LamsErT, and others,
received from LAGRANGE and LAPLACE the most careful consideration
in the light of all that had been previously done. The solution given
by the former is analytically complete, but far from being practically
complete; that given by the latter is especially simple and practical so
far as regards the labor of computation; but the results obtained by it
are so affected by the unavoidable errors of observation as to be often
little more than rude approximations. The method which was found to
answer best in actual practice, was that proposed by OLBERS in his
work entitled Leichteste und bequemste Methode die Bahn eines Cometen
2u berechnen, in which, by making use of a beautiful theorem of para-
bolic motion demonstrated by EuLER and also by LAMBERT, and by
adopting a method of trial and error in the numerical solution of
certain equations, he was enabled to effect a solution which could be
performed with remarkable ease. The accuracy of the results obtained
by OLBERS’S method, and the facility of its application, directed the
attention of LEGENDRE, Ivory, Gauss, and ENCkE to this subject, and
by them the method was extended and generalized, and rendered appli
cable in the exceptional cases in which the other methods failed.

It should be observed, however, that the knowledge of one element,
the eccentricity, greatly facilitated the solution; and, although elliptic
elements had been computed for some of the comets, the first hypothesis
was that of parabolic motion, so that the subsequent process reguired
simply the determination of the corrections tc be applied to these ele-
ments in order to satisfy the observations. The more difficult problem
of determining all the elements of planetary motion directly from three
observed places, remained unsolved until the discovery of Ceres by
Prazzr in 1801, by which the attention of GAuss was directed to this
subject, the result of which was the subsequent publication of his
Theoria Motus Corporum Ceelestium, a most able work, in which he gave
to the world, in a finished form, the results of many years of attention

!’



PREFACE. b

to the subject of which it treats, Iis method for determining all the
elements directly from given observed places, as given in the Theoria
Motus, and as subsequently given in a revised form by ENCkE, leaves
scarcely any thing to be desired on this topic. In the same work he
gave the first explanation of the method of least squares, a method
which has been of inestimable service in investigations depending on
observed data.

The discovery of the minor planets directed attention also to the
methods of determining their perturbations, since those applied in the
case of the major planets were found to be inapplicable. For a long
time astronomers were contex;t simply to compute the special perturba- -
tions of these bodies from epoch to epoch, and it was not until the com-
mencement of the brilliant researches by HANsEN that serious hopes
were entertained of being able to compute successfully the general per-
turbations of these bodies. By devising an entirely new mode of con-
sidering the perturbations, namely, by determining what may be called
the perturbations of the time, and thus passing from the undisturbed
place to the disturbed place, and by other ingenious analytical and
mechanical devices, he succeeded in effecting a solution of this most
difficult problem, and his latest works contain all the formulz which are
required for the cases actually occurring. The refined and difficult
analysis and the laborious calculations involved were such that, even
after HANSEN’S methods were made known, astronomers still adhered to
the method of special perturbations by the variation of constants as
developed by LAGRANGE. ;

The discovery of Astrea by HENCKE was speedily followed by the
discovery of other planets, and fortunately indeed it so happened that
the subject of special perturbations was to receive a new improvement.
The discovery by BoND and ENcCKE of a method by which we determine
at once the variations of the rectangular co-ordinates of the disturbed
body by integrating the fundamental equations of motion by means of
mechanical quadrature, directed the attention of HANSEN to this phase
of the problem, and soon after he gave formule for the determination
of the perturbations of the latitude, the mean anomaly, and the loga-
rithm of the radius-vector, which are exceedingly convenient in the
process of integration, and which have been found to give the most
satisfactory results. The formule for the perturbations of the latitude,
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true longitude, and radius-vector, to be integrated in the same manner,
were afterwards given by BrUNNoOW.

Having thus stated briefly a few historical facts relating to the
problems of theoretical astronomy, I proceed to a statement of the
object of this work. The discovery of so many planets and comets has
furnished a wide field for exercise in the calculations relating to their
motions, and it has occurred to me that a work which should contain a
development of all the formule required in determining the orbits of the
heavenly bodies directly from given observed places, and in correcting
these orbits by means of more extended discussions of series of observa-
tions, including also the determination of the perturbations, together
with a complete collection of auxiliary tables, and also such practical
directions as might guide the inexperienced computer, might add very
materially to the progress of the science by attracting the attention of a
greater number of competent computers. Having carefully read the
works of the great masters, my plan was to prepare a complete work on
this subject, commencing with the fundamental principles of dynamies,
and systematically treating, from ome point of view, all the problems
presented. The scope and the arrangement of the work will be best
understood after an examination of its contents; and let it suffice to add
that I have endeavored to keep constantly in view the wants of the
computer, providing for the exceptional cases as they occur, and giving
all the formulee which appeared to me to be best adapted to the problems
under consideration. I have not thought it worth while to trace out the
geometrical signification of many of the auxiliary quantities introduced.
Those who are curious in such matters may readily derive many beau-
tiful theorems from a consideration of the relations of some of these
auxiliaries. For convenience, the formule are numbered consecutively
through each chapter, and the references to those of a preceding chapter
are defined by adding a subseript figure denoting the number of the
chapter. )

Besides having read the works of those who have given special atten
tion to these problems, I have consulted the Astronomische Nachrichten,
the Astronomical Journal, and other astronomical periodicals, in which
is to be found much valuable information resulting from the experi-
‘ence of those who have been or are now actively engaged in astro-
womical pursuits. I must also express my obligations to the publishers,
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Messrs. J. B. Lirpincorr & Co., for the generous interest which they
have manifested in the publication of the work, and also to Dr. B. A.
Gourp, of Cambridge, Mass., and to Dr. OproLzER, of Vienna, for
valuable suggestions.

For the determination of the time from the perihelion and of the true
anomaly in very eccentric orbits I have given the method proposed by
BesseL in the Monatliche Correspondenz, vol. xii.,—the tables for which
were subsequently given by BRUNNOW in his Astronomical Notices,—and
also the method proposed by Gauss, but in a more convenient form.
For obvious reasons, I have given the solution for the special case of
parabolic motion before completing the solution of the general problem
of finding all of the elements of the orbit by means of three observed
places. The differential formule and the other formulw for correcting
approximate elements are given in a form convenient for application,
and the formule for finding the chord or the time of describing the
subtended arc of the orbit, in the case of very eccentric orbits, will be
found very convenient in practice.

I have given a pretty full development of the application of the
theory of probabilities to the combination of observations, endeavoring
to direct the attention of the reader, as far as possible, to the sources of
error to be apprehended and to the most advantageous method of treat-
ing the problem so as to eliminate the effects of these errors. For the
rejection of doubtful observations, according to theoretical considerations,
I have given the simple formula, suggested by CHAUVENET, which fol
lows directly from the fundamental equations for the probability of
errors, and which will answer for the purposes here required as well as
the more complete criterion proposed by Prrrce. In the chapter
devoted to the theery of special perturbations I have taken particular
pains to develop the whole subject in a complete and practical form,
keeping constantly in view the requirements for accurate and convenient
numerical application. The time is adopted as the independent variable
in the determination of the perturbations of the elements directly, since
experience has established the convenience of this form; and should it
be desired to change the independent variable and to use the differential
coefficients with respect to the eccentric anomaly, the equations between
this function and the mean motion will enable us to effect readily the
required transformation. :
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The numerical examples involve data derived from actual observa-
tions, and care has been taken to make them complete in every respect,
50 as to serve as a guide to the efforts of those not familiar with these
calculations; and when different fundamental planes are spoken of, it is
presumed that the reader is familiar with the elements of spherical
astronomy, so that it is unnecessary to state, in all cases, whether the
centre of the sphere is taken at the centre of the carth, or at any other
point in space.

The preparation of the Tables has cost me a great amount of labor,
logarithms of ten decimals being employed in order to be sure of the
last decimal given. Several of those in previous use have been recom-
puted and extended, and others here given for the first time have been
prepared with special care. The adopted value of the constant of the
solar attraction is that given by Gauss, which, as will appear, is not
accurately in accordance with the adoption of the mean distance of the
earth from the sun as the unit of space; but until the absolute value of
the earth’s mean motion is known, it is best, for the sake of uniformity
and accuracy, to retain GAUss’s constant.

The preparation of this work has been effected amid many interrup-
tions, and with other labors constantly pressing me, by which the progress
of its publication has been somewhat delayed, even since the stereo-
typing was commenced, so that in some cases I have been anticipated
in the publication of formulese which would have here appeared for the
first time. I have, however, endeavored to perform conscientiously the
self-imposed task, seeking always to secure a logical sequence in the de-
velopment of the formuls, to preserve uniformity and elegance in the
notation, and to elucidate the successive steps in the analysis, so that the
work may be read by those who, possessing a respectable mathematical
education, desire to be informed of the means by which astronomers are
enabled to arrive at so many grand results connected with the motions
of the heavenly bodies, and by which the grandeur and sublimity of
creation are unveiled. The labor of the preparation of the work will
have been fully repaid if it shall be the means of directing a more
general attention to the study of the wonderful mechanism of the hea-
vens, the contemplation of which must ever serve to impress upon the
mind the reality of the perfection of the oMNIPOTENT, the LIVING GOD!

OBSERVATORY, ANN ARBOR, June, 1867. -
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THEORETICAL ASTRONOMY.

CHAPTER I.

INVESTIGATION OF THE FUNDAMENTAL EQUATIONS OF MOTION, AND OF THE FOR-
MULZ FOR DETERMINING, FROM KNOWN ELEMENTS, THE HELIOCENTRIC AND
GEOCENTRIC PLACES OF A HEAVENLY BODY, ADAPTED TO NUMERICAL COMPUTA-
TION FOR CASES OF ANY ECCENTRICITY WHATEVER.

1. THE study of the motions of the heavenly bodies does not re-
quire that we should know the ultimate limit of divisibility of the
matter of which they are composed,—whether it may be subdivided
indefinitely, or whether the limit is an indivisible, impenetrable atom.
Nor are we concerned with the relations which exist between the
separate atoms or molecules, except so far as they form, in the aggre-
gate, a definite body whose relation to other bodies of the system it
is required to investigate. On the contrary, in considering the ope-
ration of the laws in obedience to which matter is aggregated into
single bodies and systems of bodies, it is sufficient to conceive simply
of its divisibility to a limit which may be regarded as infinitesimal
compared with the finite volume of the body, and to regard the mag-
nitude of the element of. matter thus arrived at as a mathematical
point.

An element of matter, or a material body, cannot give itself
motion; neither can it alter, in any manner whatever, any motion
which may have been communicated to it. This tendency of matter
to resist all changes of its existing state of rest or motion is known
as inertia, and is the fundamental law of the motion of bodies. Xx-
perience invariably confirms it as a law of nature; the continuance of
motion as resistances are removed, as well as the sensibly unchanged

motion of the heavenly bodies during many centuries, affording the
15
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most convincing proof of its universality. Whenever, therefore, a
material point experiences any change of its state as respects rest or
motion, the cause must be attributed to the operation of something
external to the element itself, and which we designate by the word
Jorce. 'The nature of forces is generally unknown, and we estimate
them by the effects which they produce. They are thus rendered com-
parable with some unit, and may be expressed by abstract numbers.
2. If a material point, free to move, receives an impulse by virtue
of the action of any force, or if, at any instant, the force by which
motion is communicated shall cease to act, the subsequent motion of
the point, according to the law of inertia, must be rectilinear and
uniform, equal spaces being described in equal times. Thus, if s, v,
and ¢ represent, respectively, the space, the velocity, and the time, the
measure of v being the space described in a unit of time, we shall

have, in this case,
s = ot

[t is evident, however, that the space described in a unit of time will
vary with the intensity of the force to which the motion is due, and,
the nature of the force being unknown, we must necessarily compare
the velocities communicated to the point by different. forces, in order
to arrive at the relation of their effects. We are thus led to regard
the force as proportional to the velocity; and this also has received
the most indubitable proef as being a law of nature. HHence, the
principles of the composition and resolution of forces may be applied
also to the composition and resolution of velocities.

If the force acts incessantly, the velocity will be accelerated, and
the force which produces this motion is called an accelerating force.
In regard to the mode of operation of the force, however, we may
consider it as acting absolutely without cessation, or we may regard
it as acting instantaneously at successive infinitesimal intervals repre-
sented by df, and hence the motion as uniform during each of these
intervals. The latter supposition is that which is best adapted to
the requirements of the infinitesimal calculus; and, according to the
fundamental principles of this calculus, the finite result will be the
same as in the case of a force whose action is absolutely incessant.
Therefore, if we represent the element of space by ds, and the ele-
ment of time by d¢, the instantaneous velocity will be
ds
Ti_t"

which will vary from one instant to another.

Vi=—
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3. Since the force is proportional to the velocity, its measure at
any instant will be determined by the corresponding velocity. If
the accelerating force is constant, the motion will be uniformly accele-
rated; and if we designate the acceleration due to the force by f, the
unit of f being the velocity generated in a unit of time, we shall have

v=ft.

If, however, the force be variable, we shall have, at any instant,

the relation

dv
=2,

the force being regarded as constant in its action during the element
of time dt. 'The instantaneous value of v gives, by differentiation,

dv __ d'
dt = dif
and hence we derive
d?
=2 &)

so that, in varied motion, the acceleration due to the force is mea-
sured by the second differential of the space divided by the square
of the element of time.

4. By the mass of the body we mean its absolute quantity of mat-
ter. The density is the mass of a unit of volume, and hence the
entire mass is equal to the volume multiplied by the density. If it
is required to compare the forces which act upon different bodies, it
is evident that the masses must be considered. If equal masses
receive impulses by the action of instantaneous forces, the forces
acting on each will be to .each other as the velocities imparted ; and
if we consider as the unit of force that which gives to a unit of mass
the unit of velocity, we have for the measure of a force F, denoting

the mass by M,
F =M.

This is called the quantity of motion of the body, and expresses its
capacity to overcome inertia. By virtue of the inert state of matter,
there can be no action of a force without an equal and contrary re-
action; for, if the body to which the force is applied is fixed, the
equilibrium between the resistance and the force necessarily implies
the development of an equal and contrary force; and, if the body be

free to move, in the change of state, its inertia will oppose equal and
2
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contrary resistance. Hence, as a necessary consequence of inertia, it
follows that action and reaction are simultaneous, equal, and contrary.
If the body is acted upon by a force such that the motion is varied,

the accelerating force upon each element of its mass is represented by
dv

7 and the entire motive force F is expressed by

dv
F-Jl[m,

M being the sum of all the elements, or the mass of the body. Since

y—
Tt
this gives
d’s
F=MZ,

which is the expression for the intensity of the motive force, or of
the force of inertia developed. For the unit of mass, the measure
of the force is

d’s

('ﬁ-f;

and this, therefore, expresses that part of the intensity »f the motive
foree which is impressed upon the unit of mass, and is what is usually
called the accelerating force.

5. The force in obedience to which the heavenly bodies perform
their journey through space, is known as the attraction of gravitation ;
and the law of the operation of this force, in itself simple and unique,
has been confirmed and generalized by the accumulated researches of
modern science. Not only do we find that it controls the motions of
the bodies of our own solar system, but that the revolutions of bmary
systems of stars in the remotest regions of space proclaim the uni-
versality of its operation. It unfailingly explains all the phenomena
observed, and, outstripping observation, it has furnished the means
of predicting many phenomena subsequently observed. The law of
this force is that every particle of matter is attracted by every other
particle by a force which varies directly as the mass and inversely as
the square of the distance of the attracting particle.

This reciprocal action is instantaneous, and is not modified, in any
degree, by the interposition of other particles or bodies of matter. It
is also absolutely independent of the nature of the molecules them-
selves, and of their aggregation.
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If we consider two bodies the masses of which are m and m/, and
whose magnitudes are so small, relatively to their mutual distance p,
that we may regard them as material points, according to the law of
gravitation, the action of m on each molecule or unit of m’ will be

Z—:, and the total force on m’ will be

The action of m’ on each molecule of m will be expressed by l,, and
p

its total action by

The absolute or moving force with which the masses m and m’ tend
toward each other is, therefore, the same on each body, which result
is a necessary consequence of the equality of action and reaction.
The velocities, however, with which these bodies would approach
each other must be different, the velocity of the smaller mass exceed-
ing that of the greater, and in the ratio of the masses moved. The
expression for the velocity of m’, which would be generated in a unit
of time if the force remained constant, is obtained by dividing the
absolute force exerted by m by the mass moved, which gives

m

==
2

o

and this is, therefore, the measure of the acceleration due to the
action of m at the distance p. For the acceleration due to the
action of m’ we derive, in a similar manner,

pl

6. Observation shows that the heavenly bodies are nearly spherical
in form, and we shall therefore, preparatory to finding the equations
which express the relative motions of the bodies of the system, de-
termine the attraction of a spherical mass of uniform density, or
varying from the centre to the surface according to any law, for a
point exterior to it.

If we suppose a straight line to be drawn through the centre of the
sphere and the point attracted, the total action of the sphere on the
point will be a force acting along this line, since the mass of the
sphere is symmetrical with respect to it. Let dm denote an element
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general equation; but, in the integration with reference to p, the
limits will be p = 4 a, and p =r — a, which give

V=— 4n-fr dr;
and this being independent of a, we have
—__9V_
A=— o= 0.

Whence it follows that a point placed in the interior of a spherical
shell is equally attracted in all directions, and that, if not subject to
the action of any extraneous force, it will be in equilibrium in every
position.

7. Whatever may be the law of the change of the density of the
heavenly bodies from the surface to the centre, we may regard them
as composed of homogeneous, concentric layers, the density varying
only from one layer to another, and the number of the layers may
be indefinite. The action of each of these will be the same as if its
mass were united at the centre of the shell ; and hence the total action
of the body will be the same as if the entire mass were concentrated
at its centre of gravity. The planets are indeed not exactly spheres,
but oblate spheroids differing but little from spheres; and the error
of the assumption of an exact spherical form, so far as it relates to
their action upon each other, is extremely small, and is in fact com-
pensated by the magnitude of their distances from each other; for,
whatever may be the form of the body, if its dimensions are small
in comparison with its distance from the body which it attracts, it is
evident that its action will be sensibly the same as if its entire mass
were concentrated at its centre of gravity. If we suppose a system
of bodies to be composed of spherical masses, each unattended with
any satellite, and if we suppose that the dimensions of the bodies
are small in comparison with their mutual distances, the formation
of the equations for the motion of the bodies of the system will be
reduced to the consideration of the motions of simple points endowed
with forces of attraction corresponding to the respective masses. Our
solar system is, in reality, a compound system, the several systems
of primary and satellites corresponding nearly to the case supposed ;
and, before proceeding with the formation of the equations which are
applicable to the general case, we will consider, at first, those for a
simple system of bodies, considered as points and subject to their
mutual actions and the action of the forces which correspond to the
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actual velocities of the different parts of the system for any instant.
It is evident that we cannot consider the motion of any single body
as free, and subject only to the action of the primitive impulsion
which it has received and the accelerating forces which act upon it;
but, on the contrary, the motion of each body will depend on the
force which acts upon it directly, and also on the reaction due to the
other bodies of the system. The corsideration, however, of the varia-
tions of the motion of the several bodies of the system is reduced to
the simple case of equilibrium by means of the general principle that,
if we assign to the different bodies of the system motions which are
modified by their mutual action, we may regard these motions as
composed of those which the bodies actually have and of other
motions which are destroyed, and which must therefore necessarily
be such that, if they alone existed, the system would be in equi-
librium. We are thus enabled to form at once the equations for the
motion of a system of bodies. Let m, m/, m'’, &c. be the masses of
the several bodies of the system, and =, v, z, 2/, ¢/, 2/, &ec. their co-
ordinates referred to any system of rectangular axes. Further, let
the components of the total force acting upon a unit of the mass of
m, or of the accelerating force, resolved in directions parallel to the
co-ordinate axes, be denoted by X, Y, and Z, respectively, then will
mX, mY, mZ,

be the forces which act upon the body in the same directions. The
velocities of the body m at any instant, in directions parallel to the
co-ordinate axes, will be

& dy oy
dt’ dt’ dt’

and the corresponding forces are

dz dy dz
iy ™t - " E

By virtue of the action of the accelerating force, these forces for the
next instant become

dz dy
m— + mXdt, mr -+ m Ydt, m—-

which may be written respectively':
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co-ordinate axes, of the forces acting on any point, and =, v, z, the
co-ordinates of the point. These equations are equally applicable to
the case of the equilibrium at any instant of a system of variable
form ; and substituting in them the expressions (3) for the forces de-
stroyed in the case of a system of bodies, we shall have

2%—5—2‘7)1)( 0,
Zm%ﬁ-—ZmY 0,
d*
ZE—I—ZmZ 0, @
dxy d*z
Z'm( e yw)—-fm(Yx—Xy)=0,
2 2
Zm ( (fl:; %g)——fm(Xz—Zx):O,
d* d?
Zm(y 7P za%)—fm(Zy—Yz):O;

which are the general equations for the motions of a system of bodies.

8. Let @, yi, 2, be the co-ordinates of the centre of gravity of the
system, and, by differentiation of the equations for the co-ordinates
of the centre of gravity, which are

Zmax Zmy Zmz

z, = _—Zm y Y= Zm 2, = 0

we get p
d* om d%y 5 dz
&z, _ Mg &y, _ M o

e " Im dat T Im ¢ Zm

Tutroducing these values into the first three of equations (4), they
become
d'z, "mX dy, 2ZmY d*z,  >mZ )

e Zm’ e Im’ a8 ZIm’
from which it appears that the centre of gravity of the system moves
in space as if the masses of the different bodies of which it is com-
posed, were united in that point, and the forces directly applied to it.
If we suppose that the only accelerating forces which act on the
bodies of the system, are those which result from their mutual action,
we have the obvious relation :

mX=—mX, mY=—m'Y’, mZ = —m'Z'
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and similarly for:any two bodies; and, consequently,
2mX =0, ImY =0, 2mZ=0;
so that equations (5) become

i _d’_yi _ d’ _
Tt’- =V, dt* — 0, % — 0.

Integrating these once, and denoting the constants of integration by
¢, ¢/, ¢’’, we find, by combining the results,

2 2 2
dx, +‘fiyt; +dz, =1}2=02+C’2+0"2;

and hence the absclute motion of the centre of gravity of the system,
when subject only to the mutual action of the bodies which compose
it, must be uniform and rectilinear. 'Whatever, therefore, may be
the relative motions of the different bodies of the system, the motion
of its centre of gravity is not thereby affected.

9. Let us now consider the last three of equations (4), and suppose
the system to be submitted only to the mutual action of the bodies
which compose it, and to a force directed toward the origin of co-
ordinates. The action of m’ on m, according to the law of gravita-

tion, is expressed by —, in which p denotes the distance of m from m’.

To resolve this force in directions parallel to the three rectangular
axes, we must multiply it by the cosine of the angle which the line
joining the two bodies makes with the co-ordinate axes respectively,
which gives

't ’ L= ’ Ay
X= ’”———(”p;‘ 2, Y= m—-—({, D, Z::m—-———-(z; ~13),
Further, for the components of the accelerating force of m on m/, we
have

X =m(z—z’)

S o ) y="9—9 oz
Pl s 5 2

Hence we derive
m (Yo — Xy) +m' (Yo' — X'y) =0,

and generally
Zm ( Yz — Xy) =0. ©
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In a similar manner, we find

Im (Xz — Zz) =0, )
Zm (Zy — Yz) =0.

These relations will not be altered if, in addition to their reciprocal
action, the bodies of the system are acted upon by forces directed to
the origin of co-ordinates. Thus, in the case of a force acting upon
m, and directed to the origin of co-ordinates, we have, for its action

alone,
Yz = Xy, Xz = Za, Zy =Yz,

and similarly for the other bodies. Hence these forces disappear
from the equations, and, therefore, when the several bodies of the
system are subject only to their reciprocal action and to forces directed
to the origin of co-ordinates, the last three of equations (4) become
d*y d
Zm(xd—t{——yd?)—o,
d*z d%
by e T —
~m(z di xdtz)—o,
d* dy
DY o — —_—
‘m(ydt’ zdt’)_o’
the integration of which gives

Zm (xdy — ydr) = cat,
2m (zdz — zdz) = ¢dt, (8)
Zm (ydz — 2dy) = ¢"dt,

¢ ¢/, and ¢/’ being the constants of integration. Now, ady—ydz is
double the area described about the origin of co-ordinates by the pro-
jection of the radius-vector, or line joining m with the origin of co-ordi-
nates, on the plane of @y during the element of time dt; and, further,
2de—wdz and ydz—zdy are respectively double the areas described,
during the same time, by the projection of the radius-vector on the
planes of zz and yz. The constant ¢, therefore, expresses double the
sum of the products formed by multiplying the areal velocity of each
body, in the direction of the co-ordinate plane zy, by its mass; and
¢/, ¢’’, express the same sum with reference to the co-ordinate planes
@z and yz respectively. Hence the sum of the areal velocities of the
several bodies of the system about the origin of co-ordinates, each
multiplied by the corresponding mass, is constant; and the sum of
the areas traced, each multiplied by the corresponding mass, is pro-
portional to the time. If the only forces which operate, are those
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resulting from the mutual action of the bodies which compose the
system, this result is correct whatever may be the point in space
taken as the origin of co-ordinates.

The areas described by the projection of the radius-vector of each
body on the co-ordinate planes, are the projections, on these planes, of
the areas actually described in space. We may, therefore, conceive of
a resultant, or principal plane of projection, such that the sum of the
areas traced by the projection of each radius-vector on this plane,
when projected on the three co-ordinate planes, each being multiplied
by the corresponding mass, will be respectively equal to the first
members of the equations (8). Let a, 3, and 7 be the angles which
this principal plane makes with the co-ordinate planes zy, 2, and yz,
respectively; and let S denote the sum of the areas traced on this
plane, in a unit of time, by the projection of the radius-vector of
each of the bodies of the system, each area being multiplied by the
corresponding mass. The sum S will be found to be a maximum,
and its projections on the co-ordinate planes, corresponding to the
element of time df, are

S cos a dt, S cos 5 dt, Scosy dt.
Therefore, by means of equations (8), we have
¢c=~Scosaq, ¢ = 8Scosfj, ¢’ =S cosy,
and, since cos’a + cos?f -+ cos’y =1,

S?e=c? - ¢* 4 ¢,
Hence we derive

e d
COS a =< T COSﬂ =
VeraTe R
d’
COSYy —= —F—————
Vet it

These angles, being therefore constant and independent of the time,
show that this principal plane of projection remains constantly par-
allel to itself during the motion of the system in space, whatever
may be the relative positions of the several bodies; and for this
reason it is called the invariable plane of the system. Its position
with reference to any known plane is easily determined when the
velocities, in directions parallel to the co-ordinate axes, and the
masses and co-ordinates of the several bodies of the system, are
known. The values of ¢, ¢/, ¢/’ are given by equations (8), and
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hience the values of @, 8, and 7, which determine the position of the
invariable plane.

Since the positions of the co-ordinate planes are arbitrary, we may
suppose that of zy to coincide with the invariable plane, which gives
cos =0 and cosy = 0, and, therefore, ¢/ =0 and ¢’/ =0. Further,
since the positions of the axes of  and y in this plane are arbitrary,
it follows that for every plane perpendicular to the invariable plane,
the sum of the areas traced by the projections of the radii-vectores
of the several bodies of the system, each multiplied by the corre-
sponding mass, is zero. It may also be observed that the value of 8
is constant whatever may be the position of the co-ordinate planes,
and that its value is necessarily greater than that of either of the
quantities in the second member of the equation,

=+ d*+ ",

exeept when two of them are each equal to zero. It is, therefore, a
maximum, and the invariable plane is also the plane of maximum
areas. '

10. If we suppose the origin of co-ordinates itself to move with
uniform and rectilinear motion in space, the relations expressed by
equations (8) will remain unchanged. Thus, let z,, v, 2, be the co-
ordinates of the movable origin of co-ordinates, referred to a fixed
point in space taken as the origin; and let z,, v,, 2, 2./, ¥/, 2/, &c.
be the co-ordinates of the several bodies referred to the movable
origin. Then, since the co-ordinate planes in one system remain
always parallel to those of the other system of co-ordinates, we shall

have
=2z, -+, Y=+ Yo 2=z 2,

and similarly for the other bodies of the system. Introducing these
values of @, ¥, and z into the first three of equations (4), they become

d’ dx
oA A OIS Py E=
..m( e + dt*) : mX 0,
Y (dy, -+ dzy")-—EmY—_-O,

dt*

d2’ ’
(d:’ - dt,)—fm[:O.

The condition of uniform rectilinear motion of the movable crigin
gives
dz, dy, 0, d*z,

at =0
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and the preceding equations become

iz,

Zm =7 ImX =0,

o S my—o, ' 9)
d*

Im L2 spz —
7P mZ =0,

Substituting the same values in the last three of equations (4), ob-
serving that the co-ordinates ;, v/, z are the same for all the bodies
of the system, and reducing the resulting equations by means of
equations (9), we get

b b
Em(xo di; %o d;“ )—— Zm (Yz,— Xy,) = 0,

& b
Z'm(zo—d;—o-— s )- o (Xoy — Zity) =0, (10)

d*z, d%y,
(yo e — % di/z )-—Sm (Zy, — Yz,) =0.

Hence it appears that the form of the equations for the motion of the
system of bodies, remains unchanged when we suppose the origin of
co-ordinates to move in space with a uniform and rectilinear motion.

11. The equations already derived for the motions of a system of
bodies, considered as reduced to material points, enable us to form at
once those for the motion of a solid body. The mutual distances of
the parts of the system are, in this case, invariable, and the masses
of the several bodies become the elements of the mass of the solid
body. If we denote an element of the mass by dm, the equations (5)
for the motion of the centre of gravity of the body become

mTo — (Xin, w = (Yin, wTo = fm, a1

the summation, or integration with reference to dm, being taken so as
to include the entire mass of the body, from which it appears that
the centre of gravity of the body moves in space as if the entire mass
were concentrated in that point, and the forces applied to it directly.
If we take the origin of co-ordinates at the centre of gravity of
the body, and suppose it to have a rectilinear, uniform motion in
space, and denote the co-ordinates of the element dm, in reference to
this origin, by @,, ¥, %, We have, by means of the equations (10),
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d? dz,
It ( ALl ST dt’ )dm — [ (¥, — Xyg) dm =0,
d‘l
f( % 3 dtz Zo dt2 )dm f(XZ == Zxo) dm = 0 (12)

@r  dYy
S0 Gie— 2, 2o Lo N am —f (2, — Ve dm =,

the integration with respect to dm being taken so as to include the
entire mass of the body. These equaticns, therefore, determine the
motion of rotation of the body around its centre of gravity regarded
as fixed, or as having a uniform rectilinear motion in space. Equa-
tions (11) determine the position of the centre of gravity for any
instant, and hence for the successive instants at intervals equal to di;
and we may consider the motion of the body during the element of
time df as rectilinear and uniform, whatever may be the form of its
trajectory. Hence, equations (11) and (12) completely determine the
position of the body in space,—the former relating to the motion of
translation of the centre of gravity, and the latter to the motion of
rotation about this point. It follows, therefore, that for any forces
which act upon a body we can always decompose the actual motion
into those of the translation of the centre of gravity in space, and of
the motion of rotation around this point; and these two motions may
be considered independently of each other, the motion of the centre
of gravity being independent of the form and position of the body
about this point.

If the only forces which act upon the body are the reciprocal action
of the elements of its mass and forces directed to the origin of co-
ordinates, the second terms of equations (12) become each equal to
zero, and the results indicated by equations (8) apply in this case
also. The parts of the system being invariably connected, the plane
of maximum areas, or ‘nvariable plane, is evidently that which is
perpendicular to the axis of rotation passing through the centre of
gravity, and therefore, in the motion of translation of the centre of
gravity in space, the axis of rotation remains constantly parallel to
itself. Any extraneous force which tends to disturb this relation
will necessarily develop a contrary reaction, and hence a rotating body
resists any change of its plane of rotation not parallel to itself. We
may observe, also, that on account of the invariability of the mutual
distances of the elements of the mass, according to equations (8), the
motion of rotation must be uniform.

12. We shall now consider the action of a system of bodies on a
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distant mass, which we will denote by M. Let 2y, vy, 2, @5 %o’y %'
&ec. be the co-ordinates of the several bodies of the system referred
to its centre of gravity as the origin of co-ordinates; z,, v,, and 2,
the co-ordinates of the centre of gravity of the system referred to
the centre of gravity of the body M. The co-ordinates of the body
m, of the system, referred to this origin, will therefore be

z=2, 1+ 2, Y=1, + Y 2=2,+ 2,

and similarly for the other bodies of the system. If we denote by
r the distance of the centre of gravity of m from that of M, the
accelerating force of the former on an element of mass at the centre
of gravity of the latter, resolved parallel to the axis of z, will be

e
,',,3 ’

and, therefore, that of the entire’system on the element of M, resolved
‘n the same direction, will be
Sy
5
We have also

rr= (x/ + xo)g + (?/, + yo)z + (ZI + zo)”

and, if we denote by », the distance of the centre of gravity of the
system from M,

Therefore

rt=z+y' 4 2

z

—3
i (z, + =,) (Trz + 2 (2 + 9 Y + 22) + ,’.02) c

We shall now suppose the mutual distances of the bodies of the
system to be so small in comparison with the distance r, of its centre
of gravity from that of M, that terms of the order »; may be neglected ;
a condition which is actually satisfied in the case of the secondary
systems belonging to the solar system. Hence, developing the second
factor of the second member of the last equation, and neglecting terms
of the order r?, we shall have

g i S oy 3z, (x,2, 4+ 4,9, + zlzo)’
e 7‘,3 fr" ,,.’5
and
L Aty o e Pnn e, ety
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But, since w,, ,, 2, are the co-ordinates in reference to the centre of
gravity of the system as the origin, we have

Zmz, = 0, Zmy, =0, Zmz, =0,
and the preceding equation reduces to

me Zm
2 —_— = x, —3
7,

7.3

In a similar manner, we find

Zm

ymy _, I sme_

B R
The second members of these equations are the expressions for the
total accelerating force due to the action of the bodies of the system
on M, resolved parallel to the co-ordinate axes respectively, when we
consider the several masses to be collected at the centre of gravity
of the system. Hence we conclude that when an element of mass
is attracted by a system of bodies so remote from it that terms of the
order of the squares of the co-ordinates of the several bodies, referred
to the centre of gravity of the system as the origin of co-ordinates,
may be neglected in cornparison with the distance of the system from
the point attracted, the action of the system will be the same as if
the masses were all united at its centre of gravity.

If we suppose the masses m, m/, m”’, &c. to be the elements of the
mass of a single body, the form of the equations remains unchanged;
and hence it follows that the mass J/ is acted upon by another mass,
or by a system of bodies, as if the entire mass of the body, or of the
system, were collected at its centre of gravity. It is evident, also,
that reciprocally in the case of two systems of bodies, in which the
mutual distances of the bodies are small in comparison with the
distance between the centres of gravity of the two systems, their
mutual action is the same as if all the several masses in each system
were collected at the common centre of gravity of that system; and
the two centres of gravity will move as if the masses were thus
united.

13. The results already obtained are sufficient to enable us to form
the equations for the motions of the several bodies which compose the
solar system. If these bodies were exact spheres, which could be
considered as composed of homogeneous concentric spherical shells,
the density varying only from one layer to another, the action of
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each on an element of the mass of another would be the same as if
the entire mass of the attracting body were concentrated at its centre
of gravity. The slight deviation from this law, arising from the
ellipsoidal form of the heavenly bodies, is compensated by the mag-
nitude of their mutual distances; and, besides, these mutual distances
are so great that the action of the attracting body on the entire mass
of the body attracted, is the same as if the latter were concentrated
at its centre of gravity. Hence the consideration of the reciprocal
action of the single bodies of the system, is reduced to that of material
points corresponding to their respective centres of gravity, the masses
of which, however, are equivalent to those of the corresponding
bodies. The mutual distances of the bodies composing the secondary
systems of planets attended with satellites are so small, in comparison
with the distances of the different systems from each other and from
the other planets, that they act upon these, and are reciprocally acted
upon, in nearly the same manner as if the masses of the secondary
systems were united at their common centres of gravity, respectively.
The motion of the centre of gravity of a system consisting of a
planet and its satellites is not affected by the reciprocal action of the
bodies of that system, and hence it may be considered independently
of this action. The difference of the action of the other planets on
a planet and its satellites will simply produce inequalities in the
relative motions of the latter bodies as determined by their mutual
action alone, and will not affect the motion of their common centre
of gravity. Hence, in the formation of the equations for the motion
of translation of the centres of gravity of the several planets or
secondary systems which compose the solar system, we have simply
to consider them as points endowed with attractive forces correspond-
ing to the several single or aggregated masses. The investigation
of the motion of the satellites of each of the planets thus attended,
forms a problem entirely distinct from that of the motion of the
common centre of gravity of such a system. The cor ideration of
the motion of rotation of the severa] hodies of the solar system about
their respective centres of gravity, is also independent of the motion
of translation. If the resultant of all the forces which act upon a
planet passed through the centre of gravity, the motion of rotation
would be undisturbed; and, since this resultant in all cases very
nearly satisfies this condition, the disturbance of the motion of rota-
tion is very slight. The inequalities thus produced in the motion
of rotation are, in fact, sensible, and capable of being indicated by
observation, only in the case of the earth and moon, It has, indeed,
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been rigidly demonstrated that the axis of rotation of the earth rela-
tive to the body itself is fixed, so that the poles of rotation and the
terrestrial equator preserve constantly the same position in reference
to the surface; and that also the velocity of rotation is constant.
This assures us of the permanency of geographical positions, and,
in connection with the fact that the change of the length of the
mean solar day arising from the variation of the obliquity of the
ecliptic and in the length of the tropical year, due to the action of
the sun, moon, and planets upon the earth, is absolutely insensible,
—amounting to only a small fraction of a second in a million of
years,—assures us also of the permanence of the interval which we
adopt as the unit of time in astronomical investigations.

14, Placed, as we are, on one of the bodies of the system, it is
only possible to deduce from observation the relative motions of the
different heavenly bodies. These relative motions in the case of the
comets and primary planets are referred to the centre of the sun,
since the centre of gravity of this body is near the centre of gravity
of the system, and its preponderant mass facilitates the integration
of the equations thus obtained. In the case, however, of the secondary
systems, the motions of the satellites are considered in reference to
the centre of gravity of their primaries. 'We shall, therefore, form
the equations for the motion of the planets relative to the centre of
gravity of the sun; for which it becomes necessary to consider more
particularly the relation between the heterogeneous quantities, space,
time, and mass, which are involved in them. Each denomination,
being divided by the unit of its kind, is expressed by an abstract
number ; and hence it offers no_difficulty by its presence in an equa-
tion. For the unit of space we may arbitrarily take the mean dis-
tance of the earth from the sun, and the mean solar day may be
taken as the unit of time. But, in order that when the space is
expressed by 1, and the time by 1, the force or velocity may also be
expressed by 1, if the unit of space is first adopted, the relation of
the time and the mass—which determines the measure of the force—
will be such that the units of both cannot be arbitrarily chosen.
Thus, if we denote by f the acceleration due to the action of the
mass m on a material point at the distance a, and by f” the accelera-
tion corresponding to another mass m’ acting at the same distance,
we have the relation = '
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and hence, since the acceleration is proportional to the mass, it may
be taken as the measure of the latter. But we have, for the measure

of f,
d’s
I=a

Integrating this, regarding f as constant, and the point to move from
a state of rest, we get
s=4ftr _ (13)

The acceleration in the case of a variable force is, at any instant,
measured by the velocity which the force acting at that instant would
generate, if supposed to remain constant in its action, during a unit
of time. The last equation gives, when t =1,

f=2s;

and hence the acceleration is also measured by double the space which
would be described by a material point, from a state of rest, during,
a unit of time, the force being supposed constant in its action during
this time. In each case the duration of the unit of time is involved
in the measure of the acceleration, and hence in that of the mass on
which the acceleration depends; and the unit of mass, or of the force,
will depend on the duration which is chosen for the unit of time. In
general, therefore, we regard as the unit of mass that which, acting
constantly at a distance equal to unity on a material point free to
move, will give to this point, in a unit of time, a velocity which,
if the force ceased to act, would cause it to describe the unit of dis-
tance in the unit of time.

Let the unit of time be a mean solar day; %* the acceleration due
to the force exerted by the mass of the sun at the unit of distance;
and f the acceleration corresponding to the distance r; then will

k2

f= e
and %* becomes the measure of the mass of the sun. The unit of
mass is, therefore, equal to the mass of the sun taken as many times
as k* is contained in unity. Hence, when we take the mean solar
day as the unit of time, the mass of the sun is measured by *; by
which we are to understand that if the sun acted during a mean solar
day, on a material point free to move, at a distance constantly equal
to the mean distance of the earth from the sun, it would, at the end
of that time, have communicated to the point a velocity which, if
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the force did not thereafter act, would cause it to describe, in a uni.
of time, the space expressed by A%

The acceleration due to the action of the sun at the unit of distance
is designated by %*, since the square root of this quantity appears
frequently in the formulaa which will be derived.

If we take arbitrarily the mass of the sun as the unit of mass, the
unit of time must be determined. Let ¢ denote the number of mean
sular days which must be taken for the unit of time when the unit
of mass is the mass of the sun. The space which the force due to
this mass, acting constantly on a material point at a distance equal to
the mean distance of the earth from the sun, would cause the point
to describe in the time {, is, according to equation (13),

s =3k

But, since ¢ expresses the number of mean solar days in the unit of
time, the measure of the acceleration corresponding to this unit is 2s,
and this being the unit of force, we have

BPr=1;
and hence
1
E ==
k

Therefore, if the mass of the sun is regarded as the unit of mass, the
number of mean solar days in the unit of time will be equal to unity
divided by the square root of the acceleration due to the force exerted
by this mass at the unit of distance. The numerical value of £ will
be subsequently found to be 0.0172021, which gives 58.13244 mean
solar days for the unit of time, when the mass of the sun is taken as
the unit of mass.

15. Let z, y, z be the co-ordinates of a heavenly body referred to
the centre of gravity of the sun as the origin of co-ordinates; r its
radius-vector, or distance from this origin; and let m denote the
quotient obtained by dividing its mass by that of the sun; then,
taking the mean solar day as the unit of time, the mass of the sun is
expressed by %%, and that of the planet or comet by ml’. For a
second body let the co-ordinates be 2/, ¢/, ’; the distance from the
sun, 7’; and the mass, m’k*; and similarly for the other bodies of the
system. Let the co-ordinates of the centre of gravity of the sun
referred to any fixed point in space be &, 7, £, the co-ordinate planes
being parallel to those of z, y, and z, respectively; then will the
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But, since
FP=E —24+ Y —yrP+ & —2)
pi= @ —a)+ ¢ — )P+ @ —2)
we have
dpo  o—z= df o'—=z
% Sl o s &_x— Sashe P, )

and hence we derive

dQ m [(2—z o m’ [(2'—2x 2
(dx) +7n( S ~7?)+1+m( o® _7?)_'-"'&0'

or

We find, also, in the same manner, for the partial differential coeffi-
cients with respect to v and z,

o m( ) {151
@ +m)( 5 e

The equations (16), therefore, become

2 r de
dﬂ+ka+ m 2 =it +m)(2),
de

+Mu+my—ma+mu) (18)
dSZ)

W+H@+>——ma+m(

It will be observed that the second members of equations (16) ex-
press the difference between the action of the bodies m’, m’/, &ec. on
m and on the sun, resolved parallel to the co-ordinate axes respect-
ively. The mutual distances of the planets are such that these quan-
tities are generally very small, and we may, therefore, in a first
approximation to the motion of m relative to the sun, neglect the
second members of these equations; and the integrals which may
then be derived, express what is called the undisturbed motion of m.
By means of the results thus obtained for the several bodies succes-
sively, the approximate values of the second members of equations
(18) may be found, and hence a still closer approximation to the
actual motion of m. The force whose components are expressed by
the second members of these equations is called the disturbing force;
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and, using the second form of the equations, the function £, which
determines these components, is called the perturbing function. The
complete solution of the problem is facilitated by an artifice of the
infinitesimal caleulus, known as the variation of parameters, or of
constants, according to which the complete integrals of equations (16)
are of the same form as those obtained by putting the second mem-
bers equal to zero, the arbitrary constants, however, of the latter
integration being regarded as variables. These constants of integra-
tion are the elements which determine the motion of m relative to the
sun, and when the disturbing force is neglected the elements are pure
coustants. The variations of these, or of the co-ordinates, arising
from the action of the disturbing force are, in almost all cases, very
small, and are called the perturbations. The problem which first
presents itself is, therefore, the determination of all the circumstances
of the undisturbed motion of the heavenly bodies, after which the
action of the disturbing forces may be considered.

It may be further remarked that, in the formation of the preceding
equations, we have supposed the different bodies to be free to move,
and, therefore, subject only to their mutual action. There are, in-
deed, facts derived from the study of the motion of the comets which
seem to indicate that there exists in space a resisting medium which
opposes the free motion of all the bodies of the system. If such a
medium actually exists, its effect is very small, so that it can be sen-
sible only in the case of rare and attenuated bodies like the comets,
since the accumulated observations of the different planets do not
exhibit any effect of such resistance. But, if we assume its existence,
it is evidently necessary only to add to the second members of equa-
tions (16) a force which shall represent the effect of this resistance,—
which, therefore, becomes a part of the disturbing force,—and the
motion of m will be completely determined.

16. When we consider the undisturbed motion of a planet or
comet relative to the sun, or simply the motion of the body relative
to the sun as subject only to the reclprocal action of the two bodies,
the equations (16) become

2R tm =

th+k*<1+)” 0, (19)

dtﬁ 2 L rQ —}—m)——-O.
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The equations for the undisturbed motion of a satellite relative to its
primary are of the same form, the value of 4%, however, being in this
case the acceleration due to the force exerted by the mass of the
primary at the unit of distance, and m the ratio of the mass of the
satellite to that of the primary.

The integrals of these equations introduce six arbitrary constants
of integration, which, when known, will completely determine the
undisturbed motion of m relative to the sun.

If we multiply the first of these equations by y, and the second by
z, and subtract the last product from the first, we shall find, by inte-
grating the result,

zdy —ydz
@

¢ being an arbitrary constant.
In a similar manner, we obtain

xdz — zdx__c, ydz —2dy
a a ¢

If we multiply these three equations respectively by z, —y, and =,
and add the products, we obtain

ez —dcy -+ c'2=0.

This, being the equation of a plane passing through the origin of
co-ordinates, shows that the path of the body relative to the sun is a
plane curve, and that the plane of the orbit passes through the centre
of the sun.

Again, if we multiply the first of equations (19) by 2dz, the second
by 2dy, and the third by 2dz, take the sum and integrate, we shall
find

dz +¢;g:2—|-—dz +ord _l_m)fxdx—f—ygy—}—zd.,:o.

But, since 72 = a? + ¢ + 2%, we shall have, by differentiation,
rdr = xdx + ydy 4 2dz.

Therefore, introducing this value into the preceding equation, we obtain

de* 4 :Z,:+ 7 2k2(lr+ m) 4 h—o, 20

h being an arbitrary constant.
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If we add together the squares of the expressions for ¢, ¢/, and ¢/’
and put ¢+ ¢/ 4 ¢/?=4f? we shall have

(@ + 32+ &) (da* + dyf + ) (zdz + ydy + 2dz)? =
de ag E

or
dx + dyt+4-d2* drt
di? Tdr

— 4f. (21)

If we represent by dv the infinitely small angle contained between
two consecutive radii-vectores » and r 4 dr, since da® + dy* + d2? is
the square of the element of path described by the body, we shall
have

da* 4 dy’ 4 d2* = dr* -+ r*dv’.
Substituting this value in the preceding equation, it becomes
r*dv = 2fdt. (22)

The quantity 7*dv is double the area included by the element of path
described in the element of time dt, and by the radii-vectores » and
r -+ dr; and f, therefore, represents the areal velocity, which, being a
constant, shows that the radius-vector of a planet or comet describes
equal areas in equal intervals of time.

From the equations (20) and (21) we find, by elimination,

rdr

= b 23
VR A + m) — b — & (23)

Substituting this value of dt in equation (22), we get
ofdr 24)

T ok (1 4 m) — P — 4f%

which gives, in order to find the maximum and minimum values of r,

dr n&mu+m_m_g2

dv 2f
or
2k (1 4+ m) — hr* — 4f* = (.
Therefore
B Io‘ 1 H
( + m) (e L) \/ ( :ﬁ' m)
and

B +m) d.w B "
% VTRt m

?
are, respectively, the maximum and minimum values of ». The
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points of the orbit, or trajectory of the body relative to the sun, cor-
responding to these values of r, are called the apsides; the former,
the aphelion, and the latter, the perihelion. If we represent these
values, respectively, by a(1 4 ¢) and a(1 — ¢), we shall have

o Ftm).

Q

4ff=a 1 +m) (1 —e)=kp 1 + m),

in which p =a (1—¢’). Introducing these values into the equation
(24), it becomes

dyv = _—I/TD i = L

r I = (p 1 1\
\er—ir—p \/1“(;'7—:)
the integral of which gives
v=w+cos_lle(% ~1),

@ being an arbitrary constant. Therefore we shall have

l(ﬁ—l)zcos(v—-w)s

e\NTr

from which we derive
r=————
1+ ecos(v—o)

which is the polar equation of a conic section, the pole being at the
focus, p being the semi-parameter, e the eccentricity, and v — o the
angle at the focus between the radius-vector and a fixed line, in the
plane of the orbit, making the angle @ with the semi-transverse
axis a.

If the angle v — w is counted from the perihelion, we have v =0,
and

L P
e | +ecosv 29

The angle v is called the true anomaly.

Hence we conclude that the orbit of a heavenly body revolving
around the sun is a conic section with the sun in one of the foci.
Observation shows that the planets revolve around the sun in ellipses,
usually of small eccentricity, while the comets revolve either in
ellipses of great eccentricity, in parabolas, or in hyperbolas, a cir-
cumstance which, as we shall have occasion to aotice hereafter, greatly
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For a second planet, we shall have

2 4 2 a’3
U RTEm’
and, consequently, between the mean distances and periodic times of
any two planets, we have the relation

A+me o

R T i

If the masses of the two planets m and m’ are very nearly the

same, we may take 1 +m =1 m'; and hence, in this case, it follows
that the squares of the periodic times are to each other as the cubes of
the mean distances from the sun. The same result may be stated in
another form, which is sometimes more convenient. Thus, since 7ab
is the area of the ellipse, @ and b representing the semi-axes, we

shall have

75:_13 = f = areal velocity;

and, since b* = a? (1 — ¢), we have

%%(1 % L
f=7¢'a a*(1—e)* ma 1/p’

T @

which becomes, by substituting the value of r already found,

f=3%ky/p A 4 m). (30)

In like manner, for a second planet, we have

S=3kyp A +m);

and, if the masses are such that we may take 1 - m sensibly equal
to 1 4 m/, it follows that, in this case, the areas described in equal
times, in different orbits, are proportional to the square roots of their
parameters.

17. We shall now consider the signification of some of the con-
stants of integration already introduced. ILet ¢ denote the inclination
of the orbit of m to the plane of zy, which is thus taken as the plane
of reference, and let Q be the angle formed by the axis of z and the
line of intersection of the plane of the orbit with the plane of zy;
then will the angles ¢ and § determine the position of the plane of
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of passage through the perihelion; and this determines the position
of the body in its orbit. When these six constants are known, the
undisturbed orbit of the body is completely determined.

Let V denote the velocity of the body in its orbit; then will
equation (20) become

V’:k“(l-{-m)(—z———%).

At the perihelion, » is a minimum, and hence, according to this
equation, the corresponding value of V is a maximum. At the
aphelion, ¥ is a minimum.

In the parabola, @ = oo and hence

p—iviTaaE

which will determine the velocity at any instant, when 7 is known.
It will be observed that the velocity, corresponding to the same value
of 7, in an elliptic orbit is less than in a parabolic orbit, and that,
since @ is negative in the hyperbola, the velocity in a hyperbolic
orbit is still greater than in the case of the parabola. Further, since
the velocity is thus found to be independent of the eccentricity, the
direction of the motion has no influence on the species of conic section
described.

If the position of a heavenly body at any instant, and the direction
and magnitude of its velocity, are given, the relations already derived
will enable us to determine the six constant elements of its orbit.
But since we cannot know in advance the magnitude and direction
of the primitive impulse communicated to the body, it is only by
the aid of observation that these elements can be derived; and
therefore, before considering the formule necessary to determine
unknown elements by means of observed positions, we will investi-
gate those which are necessary for the determination of the helio-
centric and geocentric places of the body, assuming the elements to
be known. The results thus obtained will facilitate the solution of
the problem of finding the unknown elements from the data furnished
by observation.

18. To determine the value of %, which is a constant for the solar
system, we have, from equation (28),
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In the case of the earth, @ =1, and therefore
2n

ek = =T o,

W1+ m

In reducing this formula to numbers we should properly use, for r,
the absolute length of the sidereal year, which is invariable. The
effect of the action of the other bodies of the system on the earth is
to produce a very small secular change in its mean longitude corre-
sponding to any fixed date taken as the epoch of the elements; and
a correction corresponding to this secular variation should be applied
to the value of t derived from observation. The effect of this cor-
rection is slightly to increase the observed value of 7; but to deter-
mine it with precision requires an exact knowledge of the masses of
all the bodies of the system, and a complete theory of their relative
motions,—a problem which is yet incompletely solved. Astronomical
usage has, therefore, sanctioned the employment of the value of %
found by means of the length of the sidereal year derived directly
from observation. This is virtually adopting as the unit of space a
distance which is very little less than the absolute, invariable mean
distance of the earth from the sun; but, since this unit may be arbi-
trarily chosen, the accuracy of the results is not thereby affected.

The value of 7 from which the adopted value of % has been com-
puted, is 365.2563835 mean solar days; and the value of the com-
bined mass of the earth and moon is

.
™ = 354710

Hence we have log7T =2.5625978148; log 11 4 m =0.0000006122;
log 27 =0.7981798684; and, consequently,

log k = 8.2355814414.

If we multiply this value of % by 206264.81, the number of seconds
of arc corresponding to the radius of a circle, we shall obtain its
value expressed in seconds of arc in a circle whose radius is unity, or
on the orbit of the earth supposed to be circular. The value of % in

seconds is, therefore,
log k& = 8.55600065746.

s B .
The quantity Tz expresses the mean angular motion of a planet

in a mean solar day, and is usually designated by g We shall,
therefore, have '
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=k1/1 + m

£
a

(33)

for the expression for the mean daily motion of a planet.

Since, in the case of the earth, V'1 - m differs very little from 1,
it will be observed that %k very nearly expresses the mean angu]ar
motion of the earth in a mean solar day.

In the case of a small planet or of a comet, the mass m is so small
that it may, without sensible error, be neglected; and then we shall
have

n= (34)

9.*.| o~

For the old planets whose masses are considerable, the rigorous ex-
pression (33) must be used.

19. Let us now resume the polar equation of the ellipse, the pole
being at the focus, which is

a(l—¢é?)

[ A
1 + ecosw

If we represent by ¢ the angle included between the conjugate axis
and a line drawn from the extremity of this axis to the focus, we
shall have

sing = ¢;

and, since a(l — &) is half the parameter of the transverse axis,
which we have designated by p, we have "

r=——-——-p .
1 -} sin ¢ cosw

The angle ¢ is called the angle of eccentricity.
Again, since p = a (1 — ¢’) = a cos’ ¢, we have

a cos’ @

= - sin ¢ cosv )

It is evident, from this equation, that the maximum value of » in an

elliptic orbit corresponds to v =180°, and that the minimum value

of 7 corresponds to v =0. It therefore increases from the perihelion

to the aphelion, and then decreases as the planet approaches the peri-
helion.
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In the case of the parabola, ¢ =90°, and sin ¢ =e=1; conse-
quently,

=Ly
"=TFcosv

But, since 1 4 cos v = 2 cos? jv, if we put g = }p, we shall have

in which ¢ is the perihelion distance. In this case, therefore, when
v == 180°, » will be infinite, and the comet will never return, but
course its way to other systems.

The angle ¢ cannot be applied to the case of the hyperbola, since
in a hyperbolic orbit e is greater than 1; and, therefore, the eccen-
tricity cannot be expressed by the sine of an arc.- If, however, we
designate by 4 the angle which the asymptote to the hyperbola makes
with the transverse axis, we shall have

e cosy =1.

Introducing this value of e into the polar equation of the hyperbola,

it becomes
P COS Y
r = ——
cosv + cos¥

But, since cosv + cos = 2 cos } (v + ) cos} (v — ), this gives

- P Ccos
"= 9 cos IT(w+¥)cosi(v—a) @1

It appears from this formula that » increases with v, and becomes in-
finite when 1 -+ ¢ cosv==0, or cosv==— cos}, in which case v =180°
— : consequently, the maximum positive value of v is represented
by 180° — ), and the maximum negative value by — (180° —n]).
Further, it is evident that the orbit will be that branch of the hyper-
bola which corresponds to the focus in which the sun is placed, since,
under the operation of an attractive force, the path of the body must
be concave toward the centre of attraction. A body subject to a
force of repulsion of the same intensity, and varying according to
the same law, would describe the other branch of the curve.

The problem of finding the position of a heavenly body as seen
from any point of reference, consists of two parts: first, the deter-
mination of the place of the body in its orbit; and then, by means
»f this and of the elements which fix the position of the plane of the
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orbit, and that of the orbit in its own plane, the determination ot
the position in space.

In deriving the formule for finding the place of the body in its
orbit, we will consider each species of conic section separately, com-
mencing with the ellipse.

20. Since the value of @ — 7 can never exceed the limits — ae and
+ ae, we may introduce an auxiliary angle such that we shall have

a -—
ae

r
= cos E.

This auxiliary angle E is called the eccentric anomaly; and its geo

metrical signification may be .easily known from its relation to the
true anomaly. Introducing this value of St

into the equation

ae
(27) and writing ¢ — T'in place of ¢, T being the time of perihelion
passage, and ¢ the time for which the place of the planet in its orbit
is to be computed, we obtain

Witm, p_E¢sinE (38)
z
a
But o ;_—m = mean daily motion of the planet = y; therefore

a

p(t—T)=FE —esinE.

The quantity u(t — T') represents what would be the angular distance
from the perihelion if the planet had moved uniformly in a circular
orbit whose radius is a, its mean distance from the sun. It is called
the mean anomaly, and is usually designated by M. We shall, there-

fore, have
M=r (t —7T),
M=FE—e¢sinF. (39)

When the planet or comet is in its perihelion, the true anomaly,
mean anomaly, and eccentric anomaly are each equal to zero. All
three of these increase from the perihelion to the aphelion, where
they are each equal to 180°, and decrease from the aphelion to the peri-
helion, provided that they are considered negative. From the peri-
helion to the aphelion v is greater than E, and E is greater than M.
The same relation holds true from the aphelion to the perihelion, if
we regard, in this case, the values of v, E, and M as negative.

As soon as the auxiliary angle E is obtained by means of the mean
motion and eccentricity, the values of 7 and v may be derived. For
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this purpose there are various formule which may be applied in
practice, and which we will now develop.
The equation
QO —

A s cos E,
gives
r=a(l—ecoskE). : (40)

This also gives
a—17T

— ae = a cos £ — ae,
or
—r
%—:acosE—ae,

which, by means of equation (25), reduces to
r cosv = a cos K — ae. 4n

If we square both members of equations (40) and (41), and subtract
the latter result from the former, we get

7* sin*v = a* (1 — ¢?) sin® E,
or
rsinv=ay1/1 — ¢ sin E=15 sin E. (42)

By means of the equations (41) and (42) it may be easily shown
that the auxiliary angle E, or eccentric anomaly, is the angle at the
centre of the ellipse between the semi-transverse axis, and a line
drawn from the centre to the point where the prolongation of the
ordinate perpendicular to this axis, and drawn through the place of
the body, meets the circumference of the circumscribed circle.

Equations (40) and (41) give

r(l1Fcosv)y=a(l+e) (1FcoskE).

By using first the upper sign, and then the lower sign, we obtain, by
reduction, -

Vrsin v =Va(l + e) sin L E,

V'r cos lw=1a(l —e) cos iE, (43)

which are convenient for the calculation of r and v, and especially so
when several places are required. By, division, these eqnations give

1+e

tan lo — \f T Z tan 1 E. (44)
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very great, this mode is indispensable, since the series will not in
that case be sufficiently convergent.

It will be observed that the formula which must be used in obtain-
ing the eccentric anomaly from the mean anomaly is transcendental,
and hence it can only be solved either by series or by trial. But
fortunately, indeed, it so happens that the circumstances of the celes-
tial motions render these approximations very rapid, the orbits being
usually either nearly circular, or else very eccentric.

If, in equation (50), we put F(E)=E, and consequently F(M)
= M, we shall have, performing the operations indicated and reducing,

E =M+ esin M + }é* sin 2M 4- &e. (54)
Let us now denote the approximate value of E computed from this
equation by %, then will
E + aE =E,
in which aE, is the correction to be applied to the assumed value of E.
Substituting this in equation (39), we get
M=UEF + aAE —esinE,—e¢cos EAE;

and, denoting by M, the value of M corresponding to E, we shall

also have
M,= E, —esin E,

Subtracting this equation from the preceding one, we obtain

M— M,

1——ecosE =ok,

It remains, therefore, only to add the value of aE, found from this
formula to the first assumed value of E, or to E, and then, using
this for a new value of E, to proceed in precisely the same manner
for a second approximation, and so on, until the correct value of E is
obtained. When the values of & for a succession of dates, at equal
intervals, are to be computed, the assumed values of E, may be ob-
tained so closely by interpolation that the first approximation, in the
manner just explained, will give the correct value; and in nearly
every case two or three approximations in this manner will suffice.

Having thus obtained the value of E corresponding to M for any
instant of time, we may readily deduce from it, by the formul®
already investigated, the corresponding values of 7 and v.

In the case of an ellipse of very great eccentricity, corresponding
to the orbits of many of the comets, the most convenient method of
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computing r and v, for any instant, is somewhat different. The
manner of proceeding in the computation in such cases we shall con-
sider hereafter; and we will now proceed to investigate the formule
for determining r and v, when the orbit is a parabola, the formulz
for elliptic motion not being applicable, since, in the parabola, e = o0,
and e=1.

22. Observation shows that the masses of the comets are insensible
in comparison with that of the sun; and, consequently, in this case,
m = 0 and equation (52), putting for p its value 29, becomes

kV'2q dt = v*dv,
or

—— 3 ‘ 2
Wt =20 1o,

costJv ®

which may be written

ita =341 4 tan’ Jv) sec’ Jvdv = (1 + tan’ Jv) d tan Jo.

V'2¢*
Integrating this expression between the limits 7'and ¢, we obtain
be—1)
veg
which is the expression for the relation between the true anomaly
and the time from the perihelion, in a parabolic orbit.

Let us now represent by 7, the time of describing the arc of a
parabola corresponding to v = 90°; then we shall have

= tan Jv + } tan® v, (65)

kr, _ 4
Véq% 8
or
st 4q
2 %

Now, l?;—ké is constant, and its logarithm is 8.5621876983; and if we

take ¢ =1, which is equivalent to supposing the comet to move in
a parabola whose perihelion distance is equal to the semi-transverse
axis of the earth’s orbit, we find

log 7, ™" = 2.03987229, or 7, = 109.61558 days;

that is, a comet moving in a parabola whose perihelion distance
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is equal to the mean distance of the earth from the sun, requires
109.61558 days to describe an arc corresponding to » = 90°.

Equation (55) contains only such quantities as are comparable with
each other, and by it {— 7, the time from the perihelion, may be
readily found when the remaining terms are known; but, in order
to find v from this formula, it will be necessary to solve the equation
of the third degree, tan v being the unknown quantity. If we put
@ = tan }v, this equation becomes

2?43z —a=0,

in which a is the known quantity, and is negative before, and positive
after, the perihelion passage. According to the general principle in
the theory of equations that in every equation, whether complete or
incomplete, the number of positive roots cannot exceed the number
of variations of sign, and that the number of negative roots cannot
exceed the number of variations of sign, when the signs of the terms
containing the odd powers of the unknown quantity are changed, it
follows that when @ is positive, there is one positive root and no
negative root. When a is negative, there is one negative root and
no positive root; and hence we conclude that equation (55) can have
but one real root.

We may dispense with the direct solution of this equation by
forming a table of the values of v corresponding to those of ¢ — 7'
in a parabola whose perihelion distance is equal to the mean distance
of the earth from the sun. This table will give the time correspond-
ing to the anomaly v in any parabola, whose perihelion distance is

g, by multiplying by q%, the time which corresponds to the same
anomaly in the table. We shall have the anomaly v corresponding
to the time ¢ — T by dividing ¢ — T by g%, and seeking in the table
the anomaly corresponding to the time resulting from this division.

A more convenient method, however, of finding the true anomaly
from the time, and the reverse, is to use a table of the form gene-
rally known as Barker’s Table. The following will explain its con-
struction :—

Multiplying equation (55) by 75, we obtain

1/7?193 (— T) =75 tan Jv - 25 tan® o.
2q"r .

Let us now put ,
M =175 tan Jv - 25 tan® v,
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75k

and C,= vz which is a constant quantity; then will
Gy =1,
q'f
The value of C, is
log C, = 9.9601277069.
Again, let us take
_G
m= —%,
q

which is called the mean daily motion in the parabola; then will
M=m{— T)="75tan v 4 25 tanLv.

If we now compute the values of M corresponding to successive
values of v from v=0° to v=180° and arrange them in a table
with the argument v, we may derive at once, from this table, for the
time (t — T') either M when v is known, or v when M=m (t — T)
is known. It may also be observed that when ¢t — 7' is negative, the
value of v is considered as being negative, and hence it is not neces-
sary to pay any further attention to the algebraic sign of ¢ — 7 than
to give the same sign to the value of v obtained from the table.

Table V1. gives the values of M for values of v from 0° to 180°,
with differences for interpolation, the application of which will be
easily understood.

23. When v approaches near to 180°, this table will be extremely
inconvenient, since, in this case, the differences between the values of
M for a difference of one minute in the value of v increase very
rapidly; and it will be very troublesome to obtain the value of »
from the table with the requisite degree of accuracy. To obviate
the necessity of extending this table, we proceed in the following
manner :—

Equation (55) may be written

k(t_T)_l 31, 21,
Vﬁq% =1tan*lv (1 + 3 cot?v);
and, multiplying and dividing the second member by (1 + cot® jv)*,
we shall have
E¢—1T)
V2t

3@ Holige
1 +cot*dv

=1 tan® v (1 + cot*3v)*
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Substituting in this the value of z above found, and reducing, we
obtain

— 2 4 326* 4 1668 4 1068
A -—23/+20y + 3(1+402+204+06) 2/’+&0'

For all the cases in which this equation is to be applied, the third
term of the second member will be insensible, and we shall have, to
a suflicient degree of approximation,

By =2y + 2047,

Table VII. gives the values of a, expressed in seconds of arc,
corresponding to consecutive values of w from w=155° to w=180°
In the application of this table, we have only to compute the vamme
of M precisely as for the case in which Table VI. is to be used,

namely, i t—T)
== m —_— s

then will w be given by the formula

sinw = I 200
N

since we have already found
kt—-T) 8

Vogt — 3sin*w

‘etz 3[200
sinw=NgG—ms = NI

Having computed the value of w from this equation, Table VII.
will furnish the corresponding value of a; and then we shall have,
for the correct value of the true anomaly,

or

v=w-+ A,

which will be precisely the same as that obtained directly from Table
V1., when the second and higher orders of differences are taken into
account.

If v is given and the time ¢ — T'is required, the table will give,
by inspection, an approximate value of A, using v as argument, and
then w is given by

w=v— A,
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from which it appears that N’/=1 when v = 90°, and that N’=}1/2
when v =180°. Therefore we have, finally, when v is less than 90°,

—TI= l N’r% sin v,

and, when v is greater than 90°,

2 v
t—T=5- N'r,

in which log ——=1.5883272995, from which ¢ — T is easily derived

when v is known

Table VIII. gives the values of N, with differences for interpola-
tion, for values of v from v=0° to v==90°, and the values of N’
for those of v from v = 90° to v =180°.

25. We shall now consider the case of the hyperbola, which differs
from the ellipse only that e is greater than 1; and, consequently, the
formulz for elliptic and hyperbolic motion will differ from each other
only that certain quantities which are positive in the ellipse are nega-
tive or imaginary in the hyperbola. We may, however, introduce
auxiliary quantities which will serve to preserve the analogy between -
the two, and yet to mark the necessary distinctions.

For this purpose, let us resume the equation

p cos+
T 2cosi (vt ) cosy (v —)

When v = 0, the factors cos}(v + ) and cos}(v — ) in the de-
nominator will be equal; and since the limits of the values of v are
180°—+) and —(180° — 4}), it follows that the first factor will vanish
for the maximum positive value of v, and that the second factor will
vanish for the maximum negative value of v, and, therefore, that, in
either case, r = oo.

In the hyperbola, the semi-transverse axis is negative, and, conse-
quently, we have, in this case,

p=ua(e?—1), or a =7 cot®+.
We have, also, for the perihelion distance,
g=a(e—1).
Let us now put
e—1
tan } F' = tan {v P (56)

b
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If we add == 1 to both members of this equation, we shall have

1xcos ¥ r(ex1) (1 cosv)
cos F P )

Taking first the upper sign, and then the lower sign, and reducing,
we get

= A Vale 1)
7]y L SATAT 2l 3 )
V'rsin v T sin 1 F)
I/;cos‘vzl—/i(e——l-) 1F. 63
B Vicos F e 83)

These equations for finding 7 and v, it will be observed, are analogous
to those previously investigated for an elliptic orbit. These equations
give, by division,

e+ 1
tan%v:\/e - 1tan%F,

which is identical with the equation (56), and may be employed to
verify the computation of r and wv.

Multiplying the last of equations (63) by the first, putting for
¢ — 1 its value tan’+), and reducing, we obtain

rsinv=atan4«tanF:{,atanq,(g_%), (64)
Further, we have
T D - (N s lnlce- 1))
1+ ecosv )

which, combined with equation (62), gives
il 1 A
rcosv:a(e—m)zéa(%—a—z). {65)

If we square these values of # sinv and r cosv, add the results to-
gether, reduce, and extract the square root, we find

r=a(€6:;—ﬁ—,—1)=ia(e<o'+é)—2). (66)

We might also introduce the auxiliary quantity ¢ into the equations
(63); but such a transformation is hardly necessary, and, if at all
desirable, it can be easily effected by means of the formule which we
have already derived.
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in which » is the mean daily motion; and if we also put
v(t— T) =N,

in which N, corresponds to the mean anomaly M in an ellipse, we
shall have, from equation (67),

{ 1
M:{;e(o’—z)—-log,a. (68)
If we multiply both members of this equation by A = 0.434294482,
the modulus of the common system of logarithms, and put

N=wp=2F s m,
: od
we shall have

N=,1;e/l(o‘—-§_)—logo',

wherein log 2 = 9.6377843113, and log Ak = 7.8733657527.
Let us now introduce F into this formula; and for this purpose we
have

1
tanF:%(a —;),
and also
log o =log tan (45° + 1F).
Therefore we obtain

N =e2 tan F'— log tan (45° 4 1F). (69)

This equation will give, directly, the time ¢ — 7' from the perihelion,
when a, ¢, and F are known; but, since it is transcendental, in the
solution of the inverse problem, that of finding the true anomaly
and radius-vector from the time, the value of F can only be found by
successive approximations.

If we differentiate the last equation, regarding N and F as vari-
able, we get ,

i cos’F

(e —cos F)dPF.
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