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aliter proofs in the 2d and 3d Scctions; all of which, as being
of less general use and application, might, it was conceived, be
omitted withont injury to the work.

IL. A general Introduction to the three Sections, comprising
a concise account, with Examples, of the Methods of Exhaus-
tions and Indivisibles, and the doctrine of Limits.

III. Notes explanatory of Newton’s text. In this part, which
forms the main body of the Treatise, the following method has
been invariably adhered to. () Each Lemma and Proposition
is prefaced, wherever the subject appeared to require it, with
such introductory remarks as were thought necessary to prepare
the reader for Newton’s danonstration. (jj) The Lemma or
Proposition itself, where any difficulty occurs, is explained in as
distinct and familiar a way as the subject would admit of.
(jj7) At the end of each will be found subjoined, under the ap-
pellation of Notes, such further remarks, deductions, and prob-
lems as the Proposition under consideration seemed naturally to
siggest.

IV. A collection of Misccllaneous Problems, with their solu-
.tions.

The reader will observe that the short account given of the
doctrine of Exhaustions and Indivisibles, and also Arts, 52, 53,
and 54, on curvature, have been extracted almost wholly from
Maclaurin ; and as utility has been his sole object, the Com-
piler of the following sheets has throughout unreservedly bor-
rowed from every valuable source within his reach.

Should this attempt be favourably received by those forwhose
use it is exclusively designed, and the Author’s leisure permit,
the 7th and 8th Sections may probably follow, upon precisely
the same plan.



MATHEMATICAL PRINCIPLES

or

Natural Pbhilosophy.

SECTION I

OF THE METHOD OF PRIME AND ULTIMATE RA-
TIOS, BY THE HELP OF WHICH THE FOLLOWING
PROPOSITIONS ARE DEMONSTRATED,

- ————

LEMMA T.

Quantities, and the ratios of quantities, wwhich, ‘
in any finite time, tend continually to equality ;
and, before the end of that time, approach
neareér to cach other than by any given dif-
Jerence, become ullimately equal.

IF you deny it, let them be ultimately unéqnal ; and
let their ultimate difference bé D. Therefore they
cannot apptoach nearer to equality than by that given
difference D. - Which is against the supposition.

% j
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LEMMA 1L

Ifin any figure Aack, terminated by the right
lines A a, A E, and the curve a c E, there
are inscribed any number of parallelograms
ADb, Bc, Cd, &c. contained under equal
bases A B, B C, CD, §e¢., and the sides Bb,
Cc, Dd, &c. paraliel to A a, the side of the

Jigure ; and the parallelograms a Kbl bL
cm, c Mdn, §c. are completed. Then, if
the breadth of those parallelograms is dimin-
ished, and their number is augmented conti-
nually ; I say, that the ultimate ratios, whichk
the inscribed figure A KbLc MAD, the
circumscribed figure AalbmcndokE, and
the curvilinear figure AabcdE, have to
each other, are ratios of equality.—(Fig.

L)

Tor the difference of the inscribed and eircumscri-
bed figure is the sum of the parallelograms K 7, L m,
M, Do, that is (because of the equality of all their
bases,) the rectangle under one of their bases K9,
and the sum of their altitudes A a ; that is, the rec-
tangle A BZ«. Butthis rectangle, because its breadth
A B is diminished indefinitely, becomes less than any
given rectangle. Therefore (by Lem. 1.) the inscri-
bed and circumscribed, and much more the inter-
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mediate curvilinear figure become ultimately equal.
‘Which was to be demonstrated.

by

-4
e

LEMMA 1IL

The same wulltimate ratios are also ratios of
equality, when the breadths A B, BC, C D,
§c. of the parallelograms are unequal, and
are all diminished indefinitely.

- For let A F be cqual to the greatest breadth ; and
let the parallclogram F A o fbe completed. This
will be greater than the difference of the inscribed
and circamscribed figures; but, because its breadth
A Fis diminished indefinitely, it will become less
than any given rectangle. 'Which was to be demon-
strated.

Cor. 1. Hence the ultimate sum of the evanescent
parallelograms coincides in every part with the cur-
vilinear figure,

Cor. 2. Much more does the rectilinear figure,
which is comprehended under the chords of the
evanescent arcs @b, be, ¢d, &c. ultimately coincide
with the curvilinear figure.

Cor. 3. As also the circumscribed rectilinear figure,
which is comprehended under the tangents of the
same arcs.

Cor. 4. And, therefore, these ultimate figures (as
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to their perimeters acIi,) are not rectilincar, but
curvilincar limits of rectilinear figures.

_—

T

LEMMA 1V,

If in two figures AacE, PprT, there are
inscribed (as before) two series of paralielo-
grams, an equal number in each.; and, their
breadths being diminished indcfinitely, if the
ultimate ratios of the parallelograms in one

Sigure to thosc in the other, each to each re-
spectively, are the same ; I say, that those
two figures AackE, PprT, are o cach
other in that same ratio.—(Iig. 2.)

For, as the parallelograms in one ave severally to
the parallelograms in the other; so, by compaosition,
is the sum of all in one to the sum of all in the other;
and so is one figure to the other ; because (by Lem.
I1L.) the former figure is to the former sum, and the
latter figure to the latter sum, in the ratio of equality.
Which was to be demonstrated.

Cor. Hence, if two quantities of any kingd are any
how divided into an equal number of parts: and those
parts, when their number is augmented, and their
magnitude diminished indefinitely, have a given ratio
to each other, the first to the first, the sccand to the
second, and so on in order ; the whole quantities wili
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be, one to the other, in that same given ratio. For,
if in the figures of this Lemma, the parallelograms
are taken to each other in the ratio of the parts, the
sum of the parts will always be, as the sum of the
parallelograms ; and, thercfore, the number of the
parallelograms and parts being augmented, and their
magnitudes diminished indefinitely, those sums will
be in the ultimate ratio of the parallelogram in one
figure, to the correspondent parallelogram in the -
other; that is, (by the supposition) in the ultimate
ratio of any };art of the one quantity to the corres-
ponding part of the other.

LEMMA V.

All homologous sides of similar figures, whe-
ther curvilinear or rectilinear, are propor-
tional ; and the areas are in the duplicate
ratio of the homologous sides.

LEMMA VL.

If any arc A CB, given in position, is subtend-
¢d by its chord A B, and in any point A, in
the middle of a continued curvature, is touch-
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equal among themselves. 'Wherefore, the right lines
A B, AD, and the intermediate arc A C B, which
are always proportional to the former, will vanish;
and will ultimately acquire the ratio of equality_
‘Which was to be demonstrated.

Cor. 1.—(Tig. 4.) Whence, if through B be drawn
BT parallel to the tangent, always cutting any right
line A F, passing through A, in F'; this line B F will
ultimately have the ratio of equality to the evanescent
arc A CB; because, completing the parallelogram
A F BD, it always has the ratio of equality to A D.

Cor. 2. And, if through B and A more right lines
are drawn, as BE, BD, AT, AG, cutting the tan-
gent A D, and its parallel B F; the ultimate ratio of
all the abscissas AD, AL, BT, BG, and of the
chord, and arc A B, to each other, will be the ratio
of equality. '

Cor. 3. And, therefore, in all our reasonings about
ultimate ratios, we may freely use any one of these
lines for any other.

LEMMA VIIL

If the right lines AR, BR, with the arc ACB,
the chord A B, and the tangent A D, consti-
tute three triangles RAB, RACB, RAD,
and then the poinis A and B approach to
each other ; I say, that the ultimate form of
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points B and C together approach towards
the point A : I say, that the areas of the tri-
angles ABD, A CE, will ultimately be, one
to the other, in the duplicate ratio of the
sides.—(Tig. 5.)

For, while the points B, C approach towards the
point A, suppose always A D to be produced to the
remote points d and e, so that A d, A ¢, may be pro-
portional to A D, AE; and let the ordinates d b, eec,
be erected parallel to the ordinates DB, E C, and
meeting A B, A Cproduced in b and ¢. Let the
curve A bc be drawn similar to the curve ABC;
and also the right line Ag, which may touch both
curves in A, and cut the ordinates D B, E C, db, ec,
in F, G, f; g. Then, supposing the length A e to re-
main the same, let the points B and C meet in thepoint
A; and, the angle ¢ A g vanishing, the curvilinear
areas A bd, Ace, will coincide with the rectilinear
areas A fd, A g e; and, therefore, (by Lem. V.) will
be in the duplieate ratio of the sides Ad, Ae. But
the areas A BD, A CE, are always proportional to
these areas; and the sides AD, AE to these sides.
Therefore also, the areas A BD, ACE are ulti-
mately in the duplicate ratio of the sides AD, A E.
‘Which was to be demonstrated.
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LEMMA X.

The spaces, which a bosly describes by any
JSinite force urging it, whether that force is
determined and immutable, or is continually
augmented or continually diminished, are, in
the very beginning of the motion, in the du-
plicate ratio of the times.

Let the times be represented by the lines AD, A
E; and the velocities generated in those times by the
ordinates D B, E C: and the spaces, described with
these velocities, will be as the arcas A BD, ACE,
described by these ordinates ; that is, at the very be-
ginning of the motion (by Lem. 1X.) in the duplicate
ratio of the times AD, A E. Which was to be de-
monstrated.

Cor. 1. And hence it is easily inferred, that the
errors of bodies, describing similar parts' of similar
figures.in proportional times, which are generated by
any equal forces, similarly applied to the bodies, and
are measured by the distances of the bodies from
those places of the similar figures, at which, without
the action of those forces, the bodies would have ar-
rived in those proportional times, are nearly in the
duplicate ratio of the times in which they are gene-
rated.

Cor. 2. But the errors, which are generated by
proportional forces, similarly applied, at similar parts
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of similar figures, are as the forces and the squares of
the times jointly.

Cor. 3. The same thing is to be understood of any
spaces whatsoever, desgribed by bodies which are
urged with different forces. These are, in the very
beginning of the motion, as the forces and the squares
of the times jointly. .

Cor. 4. And, therefore, the forces are as the spaces
described in the very beginning of the motion direct-
ly, and the squares of the times inversely.

Cor. 5. And the squares of the times are as the
spaces described directly, and the forces inversely.

LEMMA XI.

The evanescent subtense of the angle of contact,
in all curves, which at the point of contact:
have a finile curvature, is ultimately in the
duplicate ratio of the subtense of the conter-
minous arc.—(Fig. 6.)

Case 1. Let A B be that arc, AD its tangent,
B D the subtense of the angle of contact perpendicu-
lar to the tangent, A B the subtense of the arc. Let
A G, BG be erected perpendicular to the subtense
A B and the tangent A D, mecting in G; then let
the points D, B, G, approach to the points d, 8, g ;
and let I be the ultimate intersection of the lines BG,
A G, supposing the points D, B, to approach conti-
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nually to A. Itis evident, that the distance G I may
be less than any assignable. But, (from the nature
of circles passing through the points ABG, Adg)
AB*= AG X BD,and Ab* = Ag X bd; and
therefore, the ratio of A B* to A4 is compounded
of the ratios of A G to Ag, andof BDto 4d. But,
because G I may be assumed less than any assignable
length, the ratio of A G to Ag may differ from the
ratio of equality, less than by any assignable differ-
ence; and, therefore, the ratio of A B* to A &* may
differ from the ratio of BD to &d, less than by any
assignable difference. Thercfore, by Lem. I. the ul-
timate ratio of A B* to A 0* is the same with the
ultimate ratio of BD tadd. Which was to be de-
monstrated.

Case 2. Let B D be inclined to A D in any given
angle, and the ultimate ratio of BD to 4 d will always
be the same as before; and, thercfore, the same as
the ratio of A B* to A)*. 'Which was to be demon-
strated.

Case 3. And, although the angle D is not given,
but the right line B D converges to a given point, or
is determined by any other condition whatever; yet
the angles D, d, being determined by the same law,
will always converge to equality, and approach nearer
to each other than by any assigned difference; and
by Lem. I. will be ultimately equal; and, there-
fore, the lines BD, 0 d are in the same ratio to each
other as before.  'Which was to be demonstrated.

Cor. 1. Therefore, since the tangents A D, A d,
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the arcs A B, A ), and their sines B C, & ¢, become
ultimately equal to the chords A B, A%, their
squares also will ultimately be as the subtenses B D,
bd.

Cor. 2. The same squares are also ultimately as
the versed sines of the ares, which bisect the chords,
and converge to a given point. For those versed
sines are as the subtenses B D, & d.

Cor. 8. And, therefore, the versed sine is in the
duplicate ratio of the time, in which a body describes
the arc with a given ze‘focit)

Cor, 4. The rectl inear triangles ADB, Add are
ultimately in the/ triplicate ratio of the sides AD,
A d; and in the sesquiplicate ratio of the sides D B,
d b ; as being in the compound ratio of the sides A D
and DB, Ad and db. So also the triangles A B C,
A bc are ultimately in the triplicate ratio of the sides
BC,bc. What I call the sesquiplicate ratio is the
subduplicate of the triplicate, which is compounded
of the simple and subduplicate ratio.

Cor. 5. And, because D B, d b, are ultimately
parallel, and in the duplicate ratio of A D, Ad, the
ultimate curvilinear areas AD B, Add will be (by
the nature of the parabola) two-thirds of the recti~
linear triangles A D B, A db; and the segments A B,
A b will be one-third of the same triangles. And
hence these areas, and these segments, will be in the
triplicate ratio, as well of the tangents AD, Ad, as
of the chords and arcs A B, A b.



14

SCHOLIUM.

But, we have all along supposed the angle of con-
tact to be neither indefinitely greater, nor indefinitely
less, than the angles of contact, which circles contain
with their tangents; that is, that the eurvature at the
point A is neither indefinitely small, nor indefinitely
great; or, that the interval A Iis of a finite magni-
tude. For D B may be taken as A D*: in which
case, no cirele can be drawn through the point A,
between the tangent A D, and the curve A B, and
therefore the angle of contact will be indefinitely less
than circular angles. And, by a like reasoning, if
DB be made suceessively as AD*, AD*, ADS,
A D7, &c. we shall have a series of angles of contact
proceeding continually, whereof every succeeding
series is indefinitely less than the preceding. And if

4
D B be made successively as A D?, AD%, A D—’—,

A D{', A Dg—, A Dg, &ec. we shall have another
series of angles of contact, the first of which is of the
same kind with those of circles, the second indefi-
nitely greater, and every suceeeding one indefinitely
greater than the preceding. But, between any two
of these angles, another series of intermediate angles
of contact may be interposed, proceeding both ways
indefinitely, whereof every succeeding angle shall be
indefinitely greater, or indefinitely less than the pre-
ceding. As if, between the terms A D?, and A D?,

11 Tr 9
there was interposed theseries A D *, AD ¥, AD?,
4

ADi, AD%, ADY, AD?, AD", ADY,
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&c. And again, between any two angles of this se-
ries, a new series of intermediate angles may be inter-
posed, differing from one another by intervals inde-
finitely great. = Nor is nature confined to any limit.
Those things, which have been demonstrated of
curve lines, and the surfaces which they comprehend,
are casily applied to the curve surfaces and contents
of solids. But I premised these Lemmas to avoid
the tediousness of deducing long demonstrations to
an absurdity, according to the method of the ancient
geometers. For demonstrations are rendered more
concise by the method of indivisibles. But, because
the hypothesis of indivisibles is somewhat harsh, and
therefore that method is estecmed less geometrical, I
chose rather to reduce the demonstrations of the fol-
lowing propositions to the prime and ultimate sums
and ratios of nascent and evanescent quantities ; that
is, to the limits of those sums and ratios: and so to
premise the demonstrations of those limits, as briefly
as I could. For hereby the same thing is performed, ,
as by the method of indivisibles ; and those principles
being demonstrated, we may now use them with more
safety. Therefore, if hereafter I shall happen to con-
sider quantities, as made up of particles, or shall use
little curve lines for right ones, I would not be un-
derstood to mean indivisible, but evanescent divisible
quantities; not the sums and ratios of determinate
parts, but always the limits of sums and ratios: and,
that the force of such demonstrations always depends
on the method laid down in the preceding Lemmas.
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Be¢, and afterwards continue its motion along the
right line BC. Draw ¢ C parallel to BS, meeting
B Cin C;and, at the end of the second part of time,
the body will be found in C, in the same plane with
the triangle ASB. Join SC; and, because SB
and C ¢ are parallel, the triangle S B C will be equal
to the triangle S B ¢, and therefore also to the triangle
SAB. By a like argument, if the centripetal force
acts successively in C, D, E, &c. making the body,
in each single particle of time, to describe the several
right lines CD, D E, EF, &c. they will lie in the
same plane; and the triangle S C D will be equal to
the triangle SBC,and SDEto SCD, and SEF
to SD E. Therefore, in equal times, equal areas are
described in one immoveable plane : and, by compo-
sition, any sums SA DS, SATF S, of those areas
are to each other, as the times in which they are de-
scribed. Let the number of those triangles be aug-
wmented, and their breadth diminished indefinitely ;
and (by Cor, 4. Lem. IIL) their ultimate perimeter
ADPFT will be a curve line: and therefore the centri-
petal force, by which the body is perpetually drawn
back from the tangent of the curve, will act continu-
ally; and any areas described SADS, SAFS,
which are always proportional to the times of descrip-
tion, will, in this case also, be proportional to those
times. 'Which was to be demonstrated.

Cor. 1. The velocity of a body, attracted towards
an immoveable centre in spaces void of resistance, is
reciprocally as the perpendicular let fall from that

c
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centre on the right line that touches the orbit.. For
the velocities in those places- A, B, C, D, Ejare as
the bases AB, BC, CD, DE, EF, of cqual triangles;
and these bases are recxproca"y as the perpendiculars
let fall upon them. - )

Cor. 2. If the chords A B, B C, of two arcs, sne-.
cessively dcscnbed in equal times by the same body
in spaces void of resistance, are completed into a par-
allelogram A B CV, and the diagonal BV of this
parallelogram, in the position which it ultimately ac-
quires, when those arcs are diminished ‘indefinitely, is
produced both ways, it will pass through the centre
of force. :

Cor. 3. If the chords A B, B C, and D E ET, of
arcs, deseribed in equal times in spaces void of resis-
tance, are completed into the parallelograms ABCYV,
DEFZ; the forces in Band I are to each other
in the ultimate ratio of the diagonals BV and EZ,
when those ares are diminished indefinitely. For the
motions B C, and E F of the body are compounded
of the motions B¢, BV, and E f; E Z: but BV and
EZ, equal to Cc and Ff, in the demonstration of
this proposition, were generated by the impulses of
the centripetal force in B and E, and arc therefore
proportional to these impulses.

Cor. 4. The forces, by which bodies in spaces void
of resistance are drawn back from their rectilinear
motions, and turned into curvilincar orbits, are to
each other, as those versed sines of® arcs described in
equal times, which converge to the centre of force,
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and bisect the chords, when those ares are diminished
indefinitely. For such versed sines are half the dia-
gonals mentioned in Cor. 8.

Cor. 5. And, therefore, those forces are to the
force of gravity, as the said versed sines, to the versed
sines perpendicular to the horizon of the parabolic
arcs, which projectiles describe in'the same time.

Cor. 6. The same things hold good when the
planes in which the bodies are moved, together with
the centres of force, which are placed in those plaves,
are not at rest, but move uniformly in a right line.

PROPOSITION II.—THEOREM IL

Every body that moves in any curve line de-
scribed in a plane, and by a radius drawn
fo a poiut, either immoveable, or moving
forward with an uniform rectilinear motion,
describes about that point areas proportional
to the times, is urged by a centripelal force
tending to that point.

Case 1. ¥or every body, that.moves in a curve
line, is turned aside from its rectilinear course by the
action of some force that impels it. ~And that force
by which the body is turned off from its rectilinear
course, and is made to describe, in equal tlmes, the

very small equal triangles SA B, SB C, SCD, &e.
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Cor. 8. The same things all follow concerning the
times, the velocities, and forces, by which bodies
describe the similar parts of any similar figures, that
have their centres in a similar position within these
figures, by applying the demonstration of the pre-
ceding cnses to those. And the application is made,
by substituting the equable description of areas for
equable motion, and using the distances of the bodies
from the centres for the radii.

Cor. 9. From the same demonstration it likewise
follows, that the arc, which a body, uniformly re-
volving in a circle with a given centripetal force, de-
scribes in any time, is a mean proportional between
the diameter of the circle, and the space, which the
same body, descending by the same given force,
would describe in the same given time.

SCHOLIUM.

The case of the sixth corollary is applicable to the
celestial bodies (as our countrymen Sir Christopher
‘Wren, Dr. Hooke, and Dr. Halley, have severally
observed); and, therefore, in what follows, I intend
to treat more at large of those things which relate to
a centripetal force decreasing in a duplicate ratio of
the distances from the centres.

Moreover, by means of the preceding proposition
and its corollaries, -we may discover the proportion
of a centripetal force to any other known force, such
as that of gravity. For if' a body, by means of its
gravity, revolves in a circle concentric to the carth,”
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Subduct on both sides the duplicate ratio of the time,
and the force will be as the versed sine directly, and
the square of the time inversely. Which was to be
demonstrated. -

And the same thing is also easily demonstrated by
Cor. 4. Lem. X.

Cor. 1.—(Fig. 8.) If a body P, revolving about
the centre S, describes a curve line APQ, and a
right line Z P R touches that curve in any point P
and, from any other point Q of the curve, QR is
drawn parallel to the distance S P, meeting the tan-
gentin R; and Q T is drawn perpendicular to the
distance S P; the centripetal force will be recipro-

SP* x QT+ .
——— 3 if the solid is taken

cally as the solid

of that magnitude which it ultimately acquires, sup-
posing the points P and Q continually to approach
to each other. For Q R is equal to the versed sine
of double the arc Q P, in whose middle is P: and
doublg the triangle SQP, or SP x Q T is propor-
tional to- the time, in which that double arc is de-
scribed ; and therefore may be used for the exponent
of the time.

Cor. 2. By a like reasoning the centripetal force
SY* x QP>
MRS
perpendicular, let fall from the centre of force on
PR, the tangent of the orbit. For the rectangles
SY x QP and SP X QT are equal.

Cor. 8. If the orbit is either a circle, or touches or

D

;ifSYisa

is reciprocally as the solid
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circle ; it is required lo find the law of cen-
tripetal force tending to any given point.—

(Fig. 9.)

Let VQP A be the circumference of the circle;
S the given point, to which the force tends, as to a
centre; P the body moving in the circumference; Q
the next place into which it .is to move, and PR Z
the tangent . of the circle at the preceding place.
Through the point S let the chord PV be drawn;
and, the diameter V A of the circle being drawn, let
A P be joined; and let fall Q T perpendicular to
S P, which produced may meet the tangent P R in
Z 5 and lastly, through the point Q let L R be drawn,
which may be parallel to. S P, and may both meet
the circle in L, and the tangent PZ in R. And,
because of the similar triangles Z QR, ZT P, VPA,
R P? that is Q RL will be to Q T?, as AV?* to

Philela oy ¥ is equal to
5L 2 VT

P V> And, therefore,

QT?* Let these equals be multiplied into Z};, and

the points P and Q continually approaching, for R L

2 ; 3
wilSBEVT P e "thall ABG E?"Axva b

Sp>'x @1
QR
position VI.) the centripetal force is reciprocally as
SP* x PV?
AV?

Therefore (by Cor. 1 and 5, Pro-

; that is (because A V* is given) reci-
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procally as the square of the distance or altitude S P,
and the cube of the chord PV jointly. Which was
to be found.

Cor. 1. Hence, if the given point S, to which the
centripetal force always tends, is placed in the cir-
cumference of this circle, suppose at V, the centri-
petal force will be reciprocally as the quadrato-cube
{or fifth power) of the altitude S P.

Cor. 2.—(TFig. 10.) The force by which the
body P in the circle APT YV revolves about the
centre of force S, is to the force by which the same
body P may revolve in the same circle, and in the
same periodical time, about any other centre of force
R, as RP* X SP, to the cube of the right line S G,
which is'drawn from the first centre of force S, to
the tangent of the orbit P G, and is parallel to the
distance P R of the body from the second centre of
force R.

For, by the constraction of this proposition, the
former force is to the latter, as R P> x P T?
to SP* x PV’; that is, as SP x R P*to
SP3: x PV3 '

PT3
PSG, TPV)to SG?.

Cor. 8. The force, by which the body P in any
orbit revolves about the centre of force S, is to the
force, by which the same body P may revolve in the
same orbit, and in the same periodical time, about
_ any other centrcof force R, as the solid SP x R P2
dontained under the distance of the body from the
first centre of force S, and the square of its distance

; or (becanse of the similar triangles
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2BC*
vegtum of the ellipsis (or for —X—é—,)"L XQR

willbeto L X P v, as QR to P ; thatis, as PE,
or ACto PCjsand L X Pv, to Go P, as L to
Gov; and GvP to Qv* as PC* to CD?*; and
(by Cor 2. Lem. VIIL.) the points Q and P continu-
ally approaching without end, Q v* is to Q z* in the
ratio of equality; and Q 2% or Qv*, isto QI as
EP*to P F*; thatis, as C A* to'P F*; or, (by Co-
nics) as CD?* to C B*%.  And compounding all these
ratios together, L X QR is to QT? as AC X
LxPC x CD,or2CB* x PC* x CD*to
PCx Goux CD*xCB? or a3s2PCto Gu.
But, the points Q and P continually approaching
without end, 2 P C and G v are equal. Therefore
the quantities L X QR and QT* proportional 't

these, are also equal. Let these equals be multiplied
2

SP
into R’ and L X S P* will become equal to

SP* x QT?

QR
'V1.) the centripetal force is reciprocally as L x S P?;-
that is, reciprocally in the duplicate ratio of the dis-
tance SP. Which was to be found.

Therefore (by»Cor. 1. and 5. Prop.

PROPOSITION XII.—PROBLEM VIIL

Let a body move in an hyperbola : it is requi-
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red to find the law of centripetal force tend-
ing to the focus of that figure—(Fig. 15.)

Let C A, C B be the semi-axes of the hyperbola;
P G, KD other conjugate diameters; P F a perpen-
dicular to the diameter K D ; and Q v an ordinate to
the diameter G P. - Let S P be drawn cutting the
diameter D K in E, and the ordinate Qv in z, and
let the parallelogram Q RP z be completed. It is
evident, that E P is equal to the semi-transverse axis
A C; for, drawing HI from the other focus H of
the hyperbola, parallel to E C, because C S, C H are
equal, ES, EI will be also equal; so that EP is
half the difference of P S, P I; thatis (because of
the parallels I H, P R, and the equal angles IP R,
H P Z)of PS, P H; the difference of which is equal
to the whole axis 2 A C. Let Q T be perpendicnlar
to SP. And the principal latus rectum of the hy-

3

. 2BC -
perbola (that is -K—C—,) being called L, we shall

have L X QR toL X Py, as QR to Pv, or P
to P »; that is {becausc of the similar triangles P rv,
PEC)asPEtoPC,orACtoPC. AlsoL X
Powillbeto Gv x P, as L to Go; and (by the
properties of the conic sections) the rectangle G v P
is to Qv*, as P C?* to CD?*; and (by Cor. 2, Lem.
VIL) Qv* to Qa?, the points Q and P continually
approaching without end, becomes a ratio of equality ;
and Q 2* or Qv* is to Q T?, as EP* to P F?; that
is, as C A* to PFs, or (by Conics) as C.D* to
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the centre, in the subduplicate ratio of the principal
latus rectum to double that distance,

. Cor. 4. The velocities of bodies revolving in ellip-
ses, at their mean distances from the common focus;
are the same as those of bodies revolving in circles, at
the same distances : that is, (by Cor. 6. Prop. IV.)
reciprocally in the subduplicate ratio of the distances.
For the perpendiculars are now the less semi-axes,
and these are as mean proportionals: between the dis-
tances and the latera recta. Let this ratio inversely
be compounded with the subduplicate ratio of the
latera recta directly, and we shall have.the subdupli-
«cate ratio of the distances inversely.

Cor. 5. In the same figure, or even in different
figures, whose principal. latera recta are equaly the
velocity of a body is reciprocally as the perpendlcular
let fall from the focus on the tangent.

Cor.. 6. In a parabola, the velocity is reciprocally
in the subduplicate ratio of the distance of the body
from the focus of the figure: in the ellipsis it is more
varied, and in the hyperbola less than according to
this ratio. * For (by Conics) the perpendicular let fall
from the focus on the tangent of a parabola is in the
subduplicate ratio of the distance. '/In the hyperbola
the perpendicular is less varied; in the ellipsis more:

Cor. 7. In a parabola, the velocity of a body, at
any distance from the focus, is to the velocity of a
body revolving in a circle at the same distance from
the centre, in the subduplicate ratio of the number
2 to 1; in the ellipsis it is less, and in the hyperbola
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greater, than according to this ratio. For (by Cor.
2. of this Prop.) the velocity at the vertex of a para-
bola is in this ratio, and (by Cor. 6. of this Prop.
end Prop. IV.) the same proportion is preserved in
all distances.: And hence also in a parabola the ve-
locity .is every where equal to the velocity of a body
revolving in a circle at half the distance; in an ellip-
sis it is less ; in an hyperbola greater.

Cor. 8. The velocity of a body, revolving in any
conic scction, is to the velocity of a body revolving in
a cirele, at the distance of half the principal latus rec-
tum of the section, as that distance, to the perpendi-
cular let fall from the focus on the tangent of the
section. 'This appears by Cor. 5.

Cor. 9. Since (by Cor. 6. Prop. 1V.) the veloc1ty
of a body, revolving in this circle, is to the velocity
of a body, revolving in any other circle, reciprocally
in the subduplicate ratio of the distances; therefore
er aquo the velocity of a body, revolving in a conic
section, will be to the velocity of a body revolving in
a circle at the same distance, as a mean proportional
between that common distance, and half the principal
latus irectum of the section, to the perpendicular let
fall from the common focus upon the tangent of the
section.

FINIS.









GENERAL INTRODUCTION

THREE SECTIONS.

Of the Method of Exhaustions.

At 1, BEFORE we enter upon the consideration
of the doctrine of Prime and Ultimate Ratios, it may
be of use to observe the steps by which the ancients
were able, in several instances, from the mensuration
of right-lined figures, to judge of such as are bound-
ed by curve lines: for as they did not allow themselves
2o resolve curvilinear figures into rectilinear elements,
it is worth while to examine by what art they could
make a transition from the one to the other.

2. They found that similar triangles are to eaclr
other in the duplicate ratio of their homelogous
sides; and by resolving similar polygons into similar
triangles, the same proportion was extended to these
polygons also. But when they came to eompare cur-
vilinear figures, which eannot be resolved into recti-
linear parts, this method failed. - In these instances,
they had recourse to what is called the, Method of
Exhaustions; the principle of which consisted, first,
in describing upon the curvilinear space a rectilinear
one, which, though not equal to the other, yet might

ot
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differ less from it than by any assignable quantity ;
and secondly, in investigating the truth or falsehood
of every supposition that could possibly be made
contrary to the proposition to be proved; and by
reducing every such supposition to an absurdity,
thence indirectly inferring the truth of the proposi-
tion itself. For instance, in comparing the areas of
two circles, they inscribed in each similar polygons,
which, by increasing the number of their sides, con-
tinnally approached to the areas of the circles, so
that the decrcasing differences betwixt each circle
and its inscribed polygon, by still further and further
divisions of the circular arcs, could become less than
any quantity that can be assigned: they found that
all this while the similar polygons observed the same
invariable ratio to each other, viz. that of the squares
of the diameters of the. circles. Upon this they
founded their demonstration; and by shewing that
some absurdity must follow if we suppose the circles
to be to each other in a greater or in a less ratio than
the squares of the diameters, they concluded that
they must be in that very ratio.. But as one com-
plete instance may serve better than any general de~
scription, to exemplify their reasoning, let the follow-
ing Theorem be proposed to be demonstrated by the
method of Exhaustions.

8. The area of a circle is equal to half the product of
its radius and circumference.—(Fig. 17.)

Let b d, the base of the right 2% A abdbe sup-
posed equal to the circumference of the circle A B D,
ab = radius CA, EFG H any equilateral poly-
gon described about the circle, A BD K a similar
polygon inscribed in it. As the circumscribed polygon
EF G H is greater than the circle, so it is greater
than the triangle ab d (being = to a a whose altitude
is CAor ab, and base = perimeter E F G H,
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which is always greater than & d, the circumference of
the ®). The inscribed polygon is less than the @,
and it is also less than the A ¢ bd, (being = toa &
whose altitude = C Q, which is less than C A or a4,
and base = to its perimeter A B D K, which is less
than the circumference 6d) : .. the ® and the a
a bd are both constantly limits betwixt the external
and internal polygons E F G H, A BD K. || Let the
arc A B be bisected in L, and the tangent at L meet
AE,BEin M and N, and the £ EL M being a
right £, EM must be greater than L M or M A,
the A ELM greater than ALM, and EM N
greater than the sum of the As AL M, BL N, and
consequently greater than half the space E AL B,
bounded by the tangents £ A, E B, and the arc
ALB; .. (by Euclid 1. 10 B, the foundation of this
method) the circumscribed polygon may approach to
the @ nearer than by any assignable quantity.|| The
inscribed polygon may also approach to the ® nearer
than by any assignable quantity, as is shewn in the
Elements of Euclid, .. the ® and the A « b d, which
are both limits betwixt these polygons, must be equal
to each other. For if the A add be not = to the
circle, it must either be greater or less than it. If the
& a bdbe greater than the @, then since the external
polygon, by encreasing the number of its sides, may
be made to approach the ® so as to exceed it by a
quantity less than any difference that can be supposed
to exist between it and the A ad d, it follows that the
-external polygen may become less than that a,
which is absurd. If the a a bd be less than the @,
then the ijuscribed polygon, by being made to ap-
proach the ®, may exceed that », which is also
absurd : Hence the circle and & are equal to each
other.

4. Archimedes in this demonstration does not sup-
pose the circle to coincide with a circumscribed equila-
teral polygon of an infinite number of sides, but pro-
ceeds in a more accurate and ancxceptionable mauner.

G



50

And in this consists the error of many writers, who
have asserted that curve lines were considered by the
ancient geometers as polygons of an infinite number
of sides. But this principle no where appears in
their writings; we never find them resolving any
figure or solid inte infinitely small elements: on the
contrary, they seem to avoid such suppositions, even
when their demonstrations might have been some-
times abridged by admitting them. For instance, if
they could have allowed themselves to have consider-
ed circles as similar polygons of an infinite number
of sides ; after proving that any similar polygons in-
scribed in circles are in the duplicate ratio of their
diameters, they would have immediately extended
this to' the circles themselves. But there is ground
to think, that they would not have admitted a demon-
stration of this kind. It was a fundamental principle
with them, on which, as Archiinedes expressly asserts,
they founded their propositions on curvilinear figures,
that the difference of any two vunequal quantities may
be added to itself until it exceed any proposed finite
quantity of the same kind. But this principle seems
to be inconsistent with the admitting of an infinitel
small quantity or difference, which added to itseﬂ'
any number of times, is never supposed to become
equal to any finite quantity whatsoever. The an-
cients, therefore, considered curvilinear areas as the
limits of circumscribed or inscribed figures of a more
simple kind, which approach to these limits, (by a
bisection of lines or angles, that is continued at plea-
sure) so that the difference betwixt them may become
less than any given quantity. The inscribed or cir-
camscribed figures were always conceived to be of a
magnitude, and N°. that is assignable ; and from what
had been shewn of these figures, they demonstrated
the mensuration or the proportions of the curvilinear
limits themselves, by arguments ab absurdo.
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Of the Method of Indivisibles.

5. The doctrine of Iixhaustions, as delivered by
Archimedes, being considered tedious and prolix by
the modern geometers, various methods were propo-
sed for the purpose of simplifying and abridging his
demonstrations. It was thought unnecessary to con-
ceive the figures circumscribed about, or inscribed in,
the curvilinear area or solid, as being always assign-
able and finite; and, therefore, instead of Archi-
medes’ assignable finite figures, indivisible or infinite-
ly small elements were substituted, and these being
imagined indefinite or infinite in N°, their sum was
supposed to coincide with the curvilinear area or
solid. .

6. It was upon these principles that Cavalerius, in
the 17th century, founded what is called the Method
of Indivisibles. In this doctrine, lines were conceiv-
ed to be made up of an indefinite N°. of points, su-
perficies of lines, and solids of superficies; and in
computing the magnitudes or proportions of areas or
solids, they computed the sum of all the indivisible
elements of which the area or solid is composed.
Thus for example, a & was conceived to be made up
of an indefinite N°. of lines parallel to the base, and
consequently the area of the A was equal to the sum
of all these parallel lines. Now to find the sum of
these parallel lines, we have only to conceive them as
a set of quantities in arithmetical progression—the
1st term being 0, and the last term the base of the
o, dand the N°, of terms the perpendicular; .". the
sum of the series, or the area of the », will = base
X 4 the perpendicular.
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7. Ex. 2.—T0 find ithe ratio betwixt the sphere and
its circumscribing ‘cylinder by the method of Indivi-
sitbles.—(Fig. 18.)

Let the cylinder N M, the cone N O R, and the
hemisphere M T S be cut by planes parallel to the
base, one of whichisCS K D C; then S O* = CD*
=SD*4+DO*=SD* + DK*, ..CD* = SD*
+ D K?; and this is true for every section parallel
to the base: .". since the eircles of which these line
are the § diameters are as the squares of the said 1
diameters, it follows that the sum of all the circles in
the § sphere, together with the sum of all the circles in
the cone = the sum of all the circles in the cylinder :
the cylinder itself .. which is composed of these cir-
cles is = to the 4 sphere and cone together ; but the
cone is a third part of the cylinder; this therefore
being deducted, there remains } sphere : cylinder
RIS IS

8. In this doctrine then we see, that by the admis-
sion of infinitely small quantities, the old foundation
of geometry was abandoned, and suppositions resort-
ed to which had been avoided by Archimedes. And
though the new geometry had much the advantage
over the ancient in point of conciseness; yet the for-
mer was much. inferior to the other in the certainty
of its deductions. For as this doctrine was inconsis-
tent with the strict principles of geometry, so it soon
appeared that there was some danger of its leading to
false conclusions. And after men had indulged them-
selves in admitting quantities that were not assign-
able, and in. supposing such things to be.done as
could not possibly be effected (against the constant
practice of the ancients), and had involved themselves
in the mazes of infinity, it was not easy for them to
avoid perplexity, and sometimes error.

9. To shew the caution which should be used in
the application of this doctrine, the following exam-
ple may be sufficient. If a © be considered as a
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polygon of an infinite number of sides, and .". an in-
finitely small arc be supposed perfectly to coincide
with its chord, it follows that the time of the vibra-
tion of a pendulum in this arc = the time of descent
down its chord ;—but, by mechanics, the ratio of the
times is that of the quadrant of a @ to‘its diameter.
Nor can this difficulty be removed except the arc be
again divided into an infinite number of indivisible
elements, infinitely less than the former; 7. e. we must
have recourse to infinitesimals of the 2d order.*

Qf the Doctrine of Prime and Ullimate Ratios.

ARrT. 10. Having taken a general view of the an-
cient geometry, as it existed in the time of Arehi-
medes, and the changes effected in it by the modern
mathematicians, previous to Newton’s time; we may
now proceed to the consideration of the doetrine of
Prime and Ultimate Ratios, which was invented by
Sir I. Newton, for the purpose, as he himself says, of
avoiding, on the one haud, the tedious demonstra-
tions of the ancient, and on the other, the inaceurate
and objectionable positions of the modern geometers.

* There is no such difficulty when the method of prime and
ultimate ratios is applied to this case ; for, though the arc and
chord approximate to equality, the times of descending along
them do not approximate; for, by the doctrine of limits, no

art of a curve, %ow small soever, can ever be taken for a right
ine: but even when they so far approach to each other, that
their lengths may be taken as equaf: the curve still remains a
curve; its inclination is different from that of the chord; the
accelerating force along the curve perpetually varies, while the
acccleratin% force along the chorcf remains_constant, and con-
sequently the times of describing these spaces are unequal, even
supposing their lengths the same. }
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1/In this doctrine, magnitudes are not supposed to con-
sist of indivisible parts, but to be generated by con-
tinued motion.  Lineze nempe (as Newton says)
describuntur, ac describendo gencrantur, non per ap-
positionem partium, sed per motum continuum punc-
torum ; superficies per motum linearum, solida per
motum superficierum, anguli per rotationem laterum,
tempora per fluxum continuum, & sic in caeteris.
Hae geneses in rerum naturd locum veré habent, &
in motu corporum quotidi¢ cernuntur.  This me-
thod of conceiving all variable quantities to be gene-

{ rated by motion is the characteristic feature, which
distinguishes both this doctrine, and also that of flux-

! ions.

11. This being premised, we now go on to the
doctrine itself, the principle of which is contained in
the following definition :—Let there be two quan-
tities, one fixed, and the other varying, so related to
each other that (1) The varying quantity, by a per-
petual augmentation or diminution, continually ap-
proaches to the fixed quantity. (2) That the vary-
ing quantity does never pass beyond, or even actually
reach that ‘which is fixed. (8) That the varying
quantity approaches nearer to the fixed quantity than
by any assignable difference ; then, upon the fulfil-
ment of these three conditions, the fixed quantity is
called the Limit or Ultimate Magnitude of the vary-
ing quantity.

12. Ez.—Take the series 1, 4, 3, 3, % &c. the
sum of which may be considered as continually vary-
ing, being perpetually increased by the accession of
a new term; I say that the N° 2 is the limit of the
varying sum of the terms of this series. For (1) the
varying sum continually approaches to the N° 2; the
difference between the sum of oue, two, three, four,
&c. terms, and the N° 2 being the N°. 1, 4, 4, 4, &c.
successively adinfinitum. (2) The sum can never ex-
ceed, or even become equal to 2; for no term in this
scries of differences can ever become either nothing
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[

or negative. (8) We may continue the series till its
sum approaches nearer.to 2, than by any difference
that can be assigned, as appears from the terms of
the series of differences, which may be continued till
" they become less than any assignable quantity. The
Ne°. 2 then, having the conditions laid down in Art.
11, is the limit of the sum of the infinite series.

18. The explanation given in Art. 11., of quan-
tities which have limits, is also to be extended to the
limits of ratios. The definition may be thus stated.
If there be two quantities that are (one or both) con-
tinually varying, either by being continually aug-
mented, or continually diminished ; and if the ratio
they bear to each other does, by this means, perpe-
tually vary, but in such a manuer, that (1) this vary-
ing ratio continually approaches to some determined
ratio; (2) that the varying ratio does never pass be-
yond, or even actually reach, the fixed ratio; (8) that
the varying ratio approaches nearer to the fixed ratio
than to any other that can be assigned : then, upon
the fulfilment of these three counditions, the deter-
mined ratio is called the limiting or ullimate ratio of
the varying one.

14. Ex.—Take theratio 32 4 4 : 22 4 1, where_
both terms are variable, by the variation of z ; then
if 2 decrease in infinitum, I say that the determined
Re. 4 ¢ 1 is the limiting R°. of the variable propor-
tion 832 + 4 : 22+ 1. For(l) as « deereascs,
the quantities 8  and 2 « decrease, and consequently
the R° 3 # 4+ 4 : 2 2 + 1 approaches to that of 4 :
1: (2) The R®%. 8z + 4 : 22 % 1 can never ex-
ceed, or even reach, thatof 4 : 1;forSz 4 4 : 2
2 4 1310 4: 1,but 8 2 4+ 4 is always greater than
8z 4+ 4; .82 4 4: 22 + 1is always in a less
Re. than that of 4 : 1; (3) The Ratio 8« + 4 : 2
2 4 1 will approach nearer to that of 4 : 1 than to
any other that can be proposed ; for in the termns of
this R°% 8z 4 4 : 22 + 1, the varying parts 3 z
and 2 &, by diminishing z, may become less than any
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assignable quantity; ., by Art. 18, the R° 4 : 1 is
the limiting R°. of 8 2 + 4 1 22 4 1.

15. In the last Ex. we may observe that, though
x is supposed to decrease in infinitum, yet the terms
of the R°. no less than the R°. itself, always continue
finite. But this is not a necessary condition; for a
R°. may never vary beyond certain limits, even though
the terms theinselves should increase or decrease in
infinitum ; and since Ratios of this sort are of most
frequent recurrence in this doctrine, and peculiarly
characteristic of it, we will now proceed to the consi-
deration of them.

16. Ez. 1.—Let « be any varying quantity ; make
4a* 4+ 8xr = A, and 2 2* 4 r = B, then will A
and B also be varying quantities, as depending upon
x ; when x vanishes, A and B will both vanish; and
when z is infinite, they will both be-infinite: I say,
that the determined R°. 8 : 1 is the limiting R°. of
A : B, while « decreases in infinitum. For the R°.
A:B=the RRe4ac+8:2041; .. (1)asa
decreases, A : B approaches to the R° 8 : 1; (2)
the R°. A : B can never exceed, or even reach, that
of8:1;for6a2* +32x:22*+ 2::8:1,but6a?
+ 8« is greater than 4 2* 4+ 8x; J.42* 4 8 2is
always in a less R% to 2 #* 4 z than the R°. 8:1;
(8) the Ratio A : B will approach nearer to that of
3: 1, than to any other that can be proposed ; for
4 xand 2 2 may become less than any assignable
quantity, by the diminution of z; consequently the
R° .8:1 is the limiting R° of 4 2* 4+ 32 : 2 4°
+ 2 -

Ez. 2.—Taking the same R°. as before; I say,
that while z increases in infinitum, the determined
Re. 2: 1 is the limiting R°. of A: B; for the given

R°, = that of 4 + S.e -+ _1_; <o (1) the Ratio
z z
A : B approaches that of 2:1; for as z increases

3 and L decrease; (2) The R°. A : B can never be
x "4
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Iess than, or even equal to, the R°. 2 1 ¥; for 4 #*
+22:228 4+ 202115 42 4 3 xis always
to 2 2* 4 z in a greater R than thatiof.2: 1;
(8) The Re. A : B will approach nearer to that of
2 : 1 than-to any other that can be proposed; for

3 and 41_, by increasing z, may.become less than

z z , :

any assignable quantity ; consequently the R°. 2 : 1
is the limiting ' R®, of 4 2* + 82 : 2 4% 4 a.

17. We see then in the two last Examples, that
though diminishing z, and consequently diminishing
the terms A and B, increases their R°; and con-
trariwise increasing these terms, by increasing «, de-
creases their R°. ; yet there is a limit both to the in-
crease and decrease of this R°., though thereis none
to the4erms themselves that composeit, which, as we
<have seen, in the first case decrease, and in the other
increase, in infinitum.

18. We will close these Examples, by proposing a
geometrical oneof thesamekind with that given in Art.
16, which is added for the purpose of more clearly
explaining Newton’s phrases of ¢ Ratio ultima quan-
titatum evanescentium,” and ¢ Ratio prima Quantita-
tum nascentium.” Let (Fig.19)ABCD, EBCF
be two quadrilateral figures, and let D F be parallel
to A E; then the quadrilateral A BCD bears to
the quadrilateral E B C I the proportion of AB +
DCto EB 4+ CF. Now ifthe line D F be sup-
posed to advance towards A E, with an uninterrupted
-motiony. till the quadrilaterals quite disappear or va-
nish, this:praportion of AB+ DC: BE + CF
will, during this motion, continually vary, (unless the
lines D A, C B, F E produced meet in the same
point, which. they are not here supposed to do)
and this proportion, by diminishing the distance be-
tween D F and A E may at last be brought nearer to
the proportion of A B : B E than to any other what-
ever 3 though it can never exceed, or evén actually

H
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reach, this‘proportion; .% tlie proportion of A B :
B E is the limiting or ultimate proportion of the
quadrilateral A B CD: the quadrilateral E BCF,
beause it is. the proportion which these quadrilaterals
can never . actually have to each other, but the limit
of that proportion. :

'Tn this Ex. then, as in the other above given, the
quantities themselves, 7. e. the quadrilaterals, have
neither of thém any final magnitude, or even so much
as a linit ; but, by the diminution of the distance be-
tween DF and A E, diniinish continually ‘without
end; ‘yet there is'ni Jimit to'the varying proportion
existing between them, viz. thatof A'B : BE; and
hence this limit is to be called the wiltimate R°. of
the vanishing quadrilaterals. S

19. ‘But that the meaning of the expression ¢ Ra-
tid ultima quantitatum evanescentium” may#be still
more clearly understood, we may further observe (1)
That since the quadrilaterals diminish by a continual
motion till they actually vanish, they may properly
be called vanishing quantities; since under this view
they have never any stable magnitude, but decrease
by a continued motion till they become mnothing.
{2) That the quadrilaterals ABCD, BEF C, be-
eome vanishing quantities, from the time we first
ascribe to théem this perpetual diminution, 7. e. from
that time they are quantities going to vanish. And
as during their diminution they have continually dif-
ferent proportions to each other; so the R°. between
A B and B E'is not to be called merely Ratio harum
quantitatum evanescentinm ; but wltima Ratio, &c.
and the same observations are applicable to the Ex-
‘ample given in Art. 16. ;

20. Should we suppose the line D F first to coin-
cide with the line A E, and then to recede from it,
thus giving birth to the quadrilaterals; then under
this conception, the R°. A B : B E, as it was before
called the R°. wherewitlr the quadrilaterals vanish, is
‘now to be considered as the R° wherewith the qua-
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drilaterals by this motion commence ; and the R°. may
also properly be called the first or prime R°. of these
quadrilaterals at their origin.

21. Asin Art. 19, the phrase vanishing quantities
was applied to the quadrilaterals, from the time that
they are quantities going to vanish; so, under the pre-
sent conception, they are to be called nascentes,. not
only at the very instant of their first production,: but
according to the sense in which such participles are
used in common speech; just as when we say of a
body, which has lain at rest, that it is beginning te
move, though it may have been some little time in
motion. On this account we must not use the simple
expression, Ratio quantitatum nascentium, but Ratio
Pprima guantitatum nascentivm. .

22. We see here the same RP°. may be. called
sometimes the Prime, at other times, the Ultimate,
R®. of the same varying quantities, aceording as these
quantities are considered under the notion of vanish-
ing, or of being produeed, before the imagination,
by an uninterrupted motion. The doctrine under
examination receives its name from both these ways
of expression. ’

23. There are two objections to this method propo-
sed and answered by Newton in his Scholium to the 1st
Section, which it may be worth while briefly to notice;
though they may have been sufficiently obviated, the
firstin Art. 18, and the second in Articles 19 and 21.
The ﬁrgt objection states, that there is no ultimate
proportion of vanishing quantitics, forasmuchas before
they vanish, the proportion is not the ultimate pro-
portion ; and when they bave vanished, it is nothing.
But Newton observes, that it might with equal justice
be contended that there is no ultimate velocity of a
body falling by. gravity to the earth’s surface, inas-
much as before it has reached the earth, the velocity
is not the wltimate velocity ; and after it has reached
the earth, it is nothing. The.answer in both cases
is easy, when the meauning -of the term wltimale is
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carefully kept in view. By the ultimate velocity then
is to be understood that, with which the body moves,
neither before it arrives at the earth, nor after; but
that very velocity with which’ it arrives: so by the
ultimate R°. of vanishing quantitiés is meant the R°.
of the ‘quantities, not before they vanish, nor after ;
but that with which theydo vanish.” Inlike manner,
by the prime R°. quantitatum nascentium, is meant the
R°. with which they start into existence : there exists
a limit to the velocity in the one case, and to the
varying R°. in the other; and this limit, as has been
frequently observed, is all that is meant by the term
ultimate proportion. ‘

In the second objection it is contended, that if the
ultimate Ratios of vanishing quantities be given, the
ultimate orvanishing quantities themselves will be
given; 7. e.' the quantities themselves will have at-
tained a limit to their decrease, which they cannot
pass; and thus every quantity will consist of indivisi-
ble parts. If by the term ultima ratio quantitatum
evanescentium were meant the ratio of ultimate quan-
tities, the objection might have some weight ; for then
it might be inferred from the expression, that these
ultimate quantities had attained some final magni-
tude; but Newton never supposes this: on the con-
trary, by ultimate or evanescent quantities he means
quantities, to the decrease of which there is no limit ;
and consequently, by the ultimate ratios quantitatum
evanescentium, is to be understood, not the Ratios of
ultimate magnitudes, but, as we have seen, the limit
of the Ratios of quantities decreasing without end;
to which limits the varying Ratios may approach
nearer than to any other that can be assigned, but
which they can never pass, nor even equal, till the
quantities are diminished in infinitum : just as when
two quantities, whose difference is given, increase in
infinitum, their ultimate R°. is given, viz. a R° of
equality; and yet the ultimate quantities themselves
are not given, because they can never reach their ul-
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will the R° z : y be ultimately = the R% v : z; m.
.other words, if m : 7 be the limiting R°. of z : 4,
and p : g the limiting R% of v : z, the R%m : "
shall accurately = thatp : g. For if not, let there be
any-given difference between them ; then, since the
Ratios z : 7 and v : z can ‘never actually reach their
limits # : » and p : ¢ ; it follows that z:y and v: z
can mnever approach nearer to equality than by this
given difference, which is contrary to the hypothesis;
S the R% m : n does accurately = that of p : g
i. e. the Ratios # : 'y and v : z are ultimately equal..

Or both cases may be concisely proved, by observ-
ing, that both quantities, and the Ratios of quantities,
such as are understood in the Lemma, cannot ap-
proach nearer to each other than their limits do; and
the absurdity of supposing these limits unequal is im-
mediately apparent. .

LEMMA III. °

Note to Lemma 3.

25. What is here proved of the arens of the in-
scribed and circumscribed figures is not true of the
perimeters ; for the £ boundary of the circumscribed
always remains the same, being = A 2 + A E, what-
ever be the N°. of divisions ; and .. never approaches
the curvilinear boundary as a limit; and the «F
boundary of the inscribed approaches that of the cir-
“cumscribed as a limit, and is always greater than the
curvilinear boundary. Hence Newton’s ultzmate sum
in Cor. 1. must be strictly confined to area.
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Lem., 5.—~Cor. 3.

26. Yor (Fig. 20) one of the lines at least in each
pai'r alylb, bmy meycny, nd, must cut the cuarve,
consequently one of the lines at least in each pair
must make a greater £ with the curve than the tan-

ents do; hence the as. apb, boc, ¢rd, form-
ed by the tangents, will fall within the mixtilinear
spaces @ 1b, bme, ¢ nd, and .". be less than them;
consequently since Aa b m cn d is ultimately = the
curvilinear area, much more will the area Aapbocrd
be ultimately = the same curvilinear area.

Notes to Lem. 5.—Cor. 4. g

27, The wltimate figures here spoken of, must be
applied only to the figures of the chords and tangents,
since the £7 perimeters above mentioned, have not the
curve line for their limit. The Cor. so far as relates
to the chords, is perfectly evident; if the reader
should not think it equally so for the figure formed
by the tangents, he may see a proof of it in Art. 37.

28. Curvilinear limits of rectilinear figures. See
Scholium to Lemma XI. where Newton again cau-
tions his readers,* that if at any time he should, for
right lines, substitute curve lineolse, they are not to
understand that these lineol are made up of right
lines, however small, , (agreeably to the doctrine of
Indivisibles) but that the curves are the limits, to
which the vanishing right lines continually approach,
and ultimately equal.-

| ——— =

* «Sj pro rectis usurpavero lincolas curvas, nolim indivisi-
bilia, sed evancscentia divisibilia-"? -
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LEMMA 1V.

29, For, by hypothesis,. A’: e’ (i B :¥::C: ¢
ultimately; *. A’: @’ IA' G+ B 4 C:a’ + UV 4+ ¢
ultimately ; but ultimately A’ + B’ 4 C’ = whole
figure D E F, and @’ + ¥ 4 ¢ = whole figure def;
. under the conditions mentioned in the Lemma,
D E F: defin the given R° of A’: o',

LEMMA V.

Introductory Articles to Lemma 5.

30. Definition.—Curvilinear figures are said to be
similar, when they may be supposed to be placed in
such a manner, that any right line being drawn from
a determined point to the terms that bound them,
the parts of the right line, intercepted betwixt that
point and those terms, are always in one constant R°.
to each other. Thus the curvilinear figures A S D,
a S d, (Fig. 21) orthe figures SP D, Sp d are simi-
lar, when any line S P being drawn always from the
same point S, meeting the two curves in P, p, the
R°. of S P : Sp isinvariable.

31. It follows, from this definition, that if there
be two similar curvilinear figures, and any rectilinear
figure be inseribed in one, a similar rectilinear figure
may be inscribed in the other. Forlet ASD, asd
(Fig. 22) be two similar curvilinear figures, and let
any rectilinear figure whatever, SAPQD, be in-
scribed in one of them, S, A D ; I say, that a similar
rectilinear figure may be inscribed in the other sz d:
from s draw s p, s ¢, &c. making the L asp, psgq,
&c. = the L5 AS P, P S Q, &c.; and consequently

I
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the remaining £ ¢ s d will = the remaining £ QSD,
joinap, pq, ¢d, &ec.; then since SA 1 sail SP:
s p (by definition) . SA : SP lsa :sp, and £
ASP = ZLasp; . asASDP, asp are similar,
and the same may be shewn of all the remaining
as; S, the polygon sa pg d is similar to the polygon
SAPQD.! 343 Vide S poiyg

32, And hence it is, that this last property has
been frequently made the criterion of similar curvi-
linear figures; 7. e. curvilinear figures have been de-
fined to be similar, when, any rectilincar figure being
inscribed in one, a similar rectilinear figure may be
inscribed in the other ; which being the case, the de-
finition above given must be proved, to follow as a
consequence from the latter, thus:

Let SA D, sad be twosimilar curvilinear figures;
in 8§ A D inseribe any polygon whatcver SAP QD ;
then, since the figures are similar, a similar polygon
may, by the definition, be inscribed in the other
sad:let sap qd be this polygon ; consequently these
polygons may (by Euclid) be divided into the sams
N°. of similar as: let them be so divided ; then since
the A® S A P, sa p aresimilar, asalso the a* SPQ,
spg,and SQD, sgd; SA:SPiisa:sp; SP:
SQ:ilsprsg; and SQ: SDilsg:sd; . » SA:
sa:iSP:spiiSQ:sgq &e.;i. e these lines S A,
sa; SP, sp, &c. are to cach other in a corstant
Ratio. v

Hence either of the above preperties may be as-
sumed as the definition of sinilar curvilinear figurcs,
since they arc each mutually deducible from, and
consistent with, the other. The last definition may
be as convenient in the following Lemma ; but in the
remaining ones the first may be used with advantage.

Lemma 5.

83. (1) Let SA D, sad (last Fig.) be two similar
curvilinear figures, and let S A P Q D be any polygon
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inscribed in the former, and s @ p ¢ d asimilar polygon
inseribed in the latter (Art. 82) ; then since the poly-
gous are similar AP : PQ:lap:pg;and PQ :
QD:ipg:gd; AP :ap :: PQ tpqiiQD
: qd, &c., and this is true when the N°. of the sides
A P,ap, PQ, pg, &e. is increased, and their mag-
nitude diminished without limit; .. (by Cor. Lem.
1V.) curve APD : curveapd AP ap i SA
asan

(2) Taking the same construction as before, since
polygons SAP QD, sap g d are similar, the A® into
which they are divided will be similar; . a SA P
PAasapll ASPQ: aspqgii ASQD : a
sgd, &c.; . as before, curvilinear area SAD :
curvilinear area sad 12 & SAP: asap:iSA?
Asai. :

LEMMA VI

Introductory Articles to Lemma 6.

84. A curve of continucd eurvature may be defined
to be a line traced out by a point, continually changing
its direction ; where we may observe that the word
continually implies that the change of direction of the
generating point must not be effected by starts or
impulses (per sallum ), but by an uninterrupted and
equable motion.  Thus the £ B C D, (Zig. 23)
which measures the variation of direction of the gene-
rating point at A and B, (while the point moves from
B to A) must, before it become nothing, pass throngh
all the intermediate degrees of magnitude, fron B CD
to nothing. :

From this definition it will appear that two curves
whiech cut one another, as Ed, d ¥, ([Iig. 24)
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cannot be called a curve of continued curvature at
the point d ; for if a and ¢ be taken on opposite
sides of d, the variation of direction from a to ¢, viz.
the £ cbg has been effected per saltum ; i. e in
passing from nothing to ¢ b g, the £ has not passed
through all the intermediate degrees of magnitude.

85. Ifrom hence also it follows, (1) That if the
distance betwixt two positions of the generating point
continually decrease, and at length ultimately vanish,
the change of direction of this point will also con-
tinually decreasc, and at length ultimately vanish;
7. e. while B moves up to A (Fig. 23) the £ BCD
is decreasing continually without limit, till at last,
when A B ultimately vanishes, the £ BCD also
ultimately vanishes.  (2) That the direction of the
generating point is a tangent to the curve; for, sup-
pose A D to be the direction of the generating point
at A, then, if it did not change its direction, it wonld
move along the line A D; but, by the definition, it
is continually changing its direction; .’ if it be in
the line A D at A, it will not continue in it, but will,
in the next moment of time, go either above or be-
low it; .. A D is a tangent to the curve at A. (3)
That A D is the only tangent; for, if possible, let
AV, (Fig. 25) making a gnite £ with A D, be a
tangent, let the point 13 move up to A, so that the
change of dircction B C D) may be indefinitely small,
then will B C D be indefinitely less than D A V; .~
a fortiori will the interior £, formed by the curve
and tangent D A, be indefinitely less than DA V;
i.e. D A passes indefinitely nearer the curve than
any other line A V that can be drawn.

Lemma 6.

36. After what has been premised, the Lemma
may be easily proved thus. Let A, B (Fig. 25) be two
positions of the generating point, draw the chord
A B, and at the points A, B, draw A C, B C in the
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direction of the generating points at A and B respec-
tively; then A C, BC are tangents to the curve,
(Art. 35.) Now, by the continual approach of B to
A, the change of direction of the generating point
will continually decrease, and at length ultimately
vanish, (Art. 85) 7. ¢, the £ B CD will ultimately
vanish; a fortiori .. will the interior £ B A D,
contained by the chord and tangent, ultimately
vanish, ’

Note to Lemma 6. '

37. By the help of this Proposition, Cor. 4. Lem.
ITI. may be easily proved. Let the two lines A D,
D B, ( Fig. 26) which touch the eurve A C B of con-
tinued curvature in the points A, B meet each otber
in D, and the chord A B be drawn; the sum of the
tangents will be greater than the chord; and if the
chord be divided into any two parts in the point C,
and the chords A C, CB be drawn, and also E ¥ a
tangent to the curve in the point C, meeting the tan-
gents AD, BD in E and F, the sum of the chords
A C, CB will be greater than the first chord A B;
and the sum of the tangents AE, EC, CF, I'B,
greater than the sum of the chords: but AE, ET
being less than AD, DF; AE,ETF, T B will be
less than A D, D B. Hence, if the N°. of parts, into
which the curve A C B is divided, be continually in-
creased, the sum of the chords will be continually
increased, and the sum of the tangents continually
diminished ; and the latter sum being always greater
than the former, the difference between them will
continually decrease; and as the Z£° between the
chords and tangents way be diminished mithout limit,
(Art. 36) this difference may bealso diminished with-
outlimit. Hence the difference between the perimeters
of the figures, contained by the two lines A @, A E,
{(Fig. 1) and the chords, and by the same two lines
and the tangents, will be continually diminished, as

the bases A B, BC, CD, &c. are diminished; and
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the perimeter of the curvilinear figure will be a limit
to them both.

LEMMA VII.

Introductory Article to Lemma 7.

38. It follows from the definition of similar curvi-
linear figures given in Art. 30, (1) that to draw a
curve Acb similar to another A CB ([ig. 27), we
must produce A B to any point 5, and, while A b re-
volves round A as a centre, let the point 6 move in
the line A b, so that A b may be to A B in a given
R°.; then will A ¢b be similar to A C B: (2) that if
A D bea tangent to A CB at A, it will also be a
tangent to the similar curve Acd at A; for draw b4
parallel to B D, then by similar a% 64 : BD ::
Ab: AB,inagiven R°; .. b d will not vanish till
B D vanishes, 7. e. at the point A.

Lemma %.

36. Produce A D (Fig. 27) to any distant point
d, and let db be drawn parallel to D B, mceting the
chord A B produced in 6; and through the point &
describe, as has been above shewn, the curve Ac¢d
continually similar to A CB, to which Ad will be a
tangent; then, by similar a5, AB: ADIIAb: Ad;
and by similar figures (Lem. 5.) ACB: Acb::
AB: Ab oras AD: Ad; .. the chord, are, and
tangent A B, A CB, and A D are always propor-
tional to the chord, arc, and tangent A b, A cd, and
Ad. But when B moves up to A, the £ 6 Ad (=
Z B A D) will, by Lem. 6, ultimately vanish; ."
A b, and also the intermediate arc A c¢b, will conti-
nually approach A d, and at length will ultimately
coincide with, and become equal to it; and conse-
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quently A B, ACB, and:- A D, which are always

proportional to these, will also ultimately be to each
other in a R°. of equality.

Notes to Lemma 7.

40. In the demonstration B D is supposed to move
parallel to itself, as B moves up to A, while 6 re-
mains fixed. Hence (1) by the motion of B towards
A, A b is continually approaching nearer to A d with-
out limit ; while, at the same time, it carries the in-
termediate arc A ¢ b (which is continually unbending
itself) along with it. (2) The magnitudes of A b and
A ¢ b also continually approach to that of A d, nearer
and nearer without limit; though these quantities can
never exceed A d, nor indeed equal it, till B and A
actually coincide ; .. the jinite lines A b, Acb, and
A d ultimately coinciding are equal ; whence this is
also inferred of the vanishing lines A B, A C B, and
A D, which are always proportional to them.

41. The Lemma is frequently explained by sup-
posing R B D (Fig. 3) to move round R fixed as a
centre, while, by this revolution, B continually ap-
proaches to A ; at the same time dr moves round
the fixed point d in a contrary direction, so as always
to kecp parallel to R B D. But this explanation is
clearly at variance with Newton’s notions, as is evi-
dent from the next Lemma.—See Art. 44,

42. Since it would be difficult for the understand-
ing, in contemplating quantities, which clude the
notice of the senses, clearly to perceive the changes
which take place in the vanishing chord, arc, and
tangent, and the limit to which their proportions
continually approach, Newton has had recourse to
the artifice of substituting, in the room of these van-
ishing quantities, finitc ones, which bear a constant
proportion to the others; and by ascertaining the
limit which the R°. Letwcen the latter ultimately at-
tains, on the coincidence of B and A, he discovers
also the limit of the Ratios of the vanishing quanti-
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LEMMA IX.

45. Produce A E to any distant point ¢, and take
Ae : Ad . AE : AD; draw ec, d b parallel to
E C, D B, and let them meet the chords A C, A B
produced in ¢, b; then the A® A db, A ec being si-
milar to ADDB, AE C respectively; Ab : AB
(cAd: AD:lAe: AE) i Ac: AC; g b,
will be in the curve A 6 ¢, which is similar to A BC;
in the same manner during the approach of C and
B to A, the points b, ¢, determined in like manuer,
will always be found in a curve similar to A B C;
and because the curves A bc, A B C are similar, the
areas A bd, A ce will be similar to the areas A B D,
A CE respectively, and they are .. proportional to
each other respectively; for ABD : Abd (:: AD*
tAd*tAE*: A¢?) (CACE : Ace; . altern®.
ABD : ACE ! Abd: Ace. To the similar
curves ABC, Abc draw the tangent AF G fg;
then as C and B move up to A, and ultimately co-
incide with it, the £ ¢ A g is continually diminished,
and will altimately vanish, .°. the curvilinear ateas
Abd, Ace will ultimately coincide with the recti-
linear areas A fd, A g e; and be .". ultimately to each
other as Ad* : Aé ; .. also will the curvilinear
areas A B D, A CE, which are proportional to these
others, be also ultimately in the Ratio of Ad* : A e*
orof AD* : AE%

Note to Lemma 9.

46. We may observe here, that the £, which
E A makes with the curve, as indeed all determined
43, and quantfrfl(es of whatsoever kind in this and the
following Sections, are supposed to be finite; New=
ton disclaims the use of infinitely small determinate
quantities as unintelligible, and by the words infi-

K
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stances mentioned in the Proposition, the spaces will
be ‘accurately measured by the curvilinear areas.

We may observe that in this, and Propositions of
the like nature, a false hypothesis is made, viz. that
the force acts by impulses, and by consequence we
deduce a false conclusion, viz. that the spaces are
represented by the sums of the parallelograms ; but
as the assumed hypothesis approaches to the true, so
does the false conclusion approach to the true con-
¢lusion ; till at length, upon the attainment of the true
hypothesis, we attain at the same time the true con-
clusion: the true hypothesis and true concluston
being respectively the limits of the assumed hypo-
thesis, and the conclusion consequent upon it.

Lemma 10.

48. Let the times be represented by the lines AD,
A E, and the veloeitics generated, by the ordinates
D B, E C, then the spaces described with these ve-
locities will, by what has been just proved, be repre-
sented by the areas A B D, A C E described by these
ordinates; but the prime R°. of these nascent areas
ABD, ACE is (Lem. IX.) that of AD?* : A E*;
2. e. the spaces described are, in the very beginning
of the motion, in the duplicate R°. of the times in
which they are described.

Lem. 10.—Cor, 1.

49. Let A B and a ) (Fig. 30 ) be similar parts of
similar figures described by two bodies in proportional
times ; and let two equal forces similarly applied act
upon the bodies, sufficient to make them move from
B to C, and from b to ¢, in thé time that they would
have described A B, a & ; then they will describe two
other curves A C, a ¢ ; and the limiting R°. of B C :
bc (which, as being the distauces the bodies have
erred from their former course, are called errors in

" this Corollary) will be that of the squares of the times
in which A B, a b would have been described. For
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B C, b ¢ may be considered as spaces described from
rest in those times by equal forces, and .". the Lemma
is applicable to them.

Note to Lemma 10.—Cor. 1.

50. ¢ Are nearly, &c.”—Though strictly speak-
ing, by the spaces mentioned in this Lemma are
meant not any spaces actually described, however
small they be taken, but only the limiting ratio of
the spaces; yet still if B C, b ¢ be actual spaces de-
scribed, provided they are sufficiently small, they will
be as the square of the times quam proxime, i.e.
without any sensible error; and thus this and the
next Corollary are applied in the 66th Proposition
to find the errors produced in the motions of the
moon, &c. by the attraction of the sun.

Lemma 10.—Cor. 5.

51. Let AD, ad (Fig. 29) represent two cqual
times, D B, d b the velocities generated in those
times ; then will the spaces be represented in ghe two~
cases by ADB,add;but ADB : adb::AD X
DB: ad x db ultimately, :: D B : db ultimately
(since AD = ad) i. e. in the very beginning of the
motion, space described varies as the momentary in-
crement of velocity when the time is given ; but the ve-
locitics generated in an indefinitely small given time
are proper measures of the accelerating forces; .*. in
the very beginning of the motion, space varies as force,
when time is given ; but (by Lemma) space varies as
T*, when force is given, .'. when neither are given,
the space will, in the very beginning of the motion,
vary as F x 1%,

LEMMA XI.

Introductory Articles to Lemma 11.
52, Any two arcs of curve lines touch each other
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when the same right line is the tangent of both at the
same point; but when they are applied upon cach
other they never perfectly coincide, unless they are
similar ares of equal and similar figures; and the
curvature of lines admits of an indefinite variety.
Becanse the curvature is uniform in a given ©, and
may be varied at pleasure in them, by enlarging or
diminishing their diameters, the flexure or curvature
of circles serves for measuring that of other lines.

53. As of all the right lines, that can be drawn
through a given point in the arc of a curve, that is
the tangent whi¢h touches the arc so closely, that no
right line can be drawn between them ; so of all the
circles that touch a curve in any given point, that is
said to have the same curvature with it, which touches
it so closely that no ® can be drawn through the
point of contact between them; all other circles passing
either .within or without them both. This ® is called
the ® of curvature belonging to the point of contact.
The arc of this ® cannot coincide with the arc of the
curve, but it is sufficient to denote it the ® of curva-
ture that no other © can pass between them; as the
tangent of the arc of a curve cannot coincide with it,
but is applied to it so that noright line can be drawn
between them. As in all curvilinear figures the po-
sition of the tangent is continually varying, so the
curvature is continually varying in all curvilinear
figures, the © only excepted. As the curve is se-
parated from its tangent by its flexure or curvature,
s0 it is separated from its ® of curvature in conse-
quence of the encrease or decrease of its curvature :
and as its curvature is greater or less, according as it
is moere or less inflected from the tangent, so the
variation of curvature is greater or less, according
as it is more or less separated from the @ of curva-
ture. Itis manifest that there is but one ® of curva-
ture belonging to an arc of a curve at the same point;
for if there were two such circles, any circles described
between these through that point would pass between
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the curve and @ of curvature, against the supposition.
Having thus shewn what the ©® of curvature is; it
will be necessary to point out, in the next place, the
method of describing it; this is done by the following
proposition :—

54. Let EM H (Fig. 31) be any curve, ET a tangent at the
point E, E Bb a right line, making any £ with ET ; T MR any
straight line parallel to E B, meeting the tangent in T, and the
curvein M ; then if the rectangle MT X TK be always taken
= ET?, and F KB be the curve traced out by the paint K thus
taken, and if this curve ultimately passes thyough B, the circle
whose chord is E B, and tangent E T, shall have the same eurva-
ture witk the curve E M H at the point E; and the contact o
E M and E R shall be always the closer, the less the L is, that
35 contained at B by the curve BKF, and the cirele of curvature
BQE. -

Let TK meet the @ in R and Q; then RT X
TQ=ET>=MT x TK (by hypothesis) ..
RT: MT::TK:TQ. Suppose first that B X,
the part of the curve B K F that is next to the point
B adjoining to it, falls without the ® B Q, and sup-
pose T K, by moving parallel to itself, to approach
to E B till it coincide with it; and while the point K
describes K B, T K being greater than TQ, R T
must be greater than M T, and the arc E M of the
curve must pass without the @ E R, betwixt it and
the tangent I T': and since any ® described through
E, upon a chord less than E B touching E T, falls
within the ® ER B, it is manifest that no such ®
can pass betwixt the curve EM and @ E R B. Nor
can any ® K75 described upon a chord E b greatér
than E B touching E T pass between E R and E M;;
for let T K meet this © in 7 and ¢, then r T X Tgq
TET = MTXITRECSMT . YT Tg.:
T K, and since F K B (by hypothesis) passes through
B so that the part of it, that is next adjoininﬁ B,
must be within the arc bg of the © b ¢ E, it follows
that while K describes this part of I'' K B, T ¢ must
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be greater than T K ; and .. M T greater than » T.
Therefore the arc Er of the ® E 5 is without the
curve EM, and passes betwixt it and the tangent E T.
Hence no ® whatever can pass betwixt EM and ER;
and consequently the © E R B has the same curva-
ture with K M at E. Suppose now that- the part of
the curve’ B K F, that is next adjoining to B, falls
within B Q (Fib. 81); then while K describes this
part of the curve F K B, T K being less than T Q,
R T must be less than M T, and the arc EM must
fall within E R; and since any ® described through
E, upon a chord greater than E B, falls without the @
E R, it is manifest that no such ® can pass betwixt
E R and E M. Nor can any ® Er 5 described upon
a chord E 5 less than EB touching E'T, pass between
ER and EM; for let T K meet this © in r and ¢,
and MT being:»T::Tg: TK, and Tg being
less than T K while K describes K B, M T must be
less than » T ; and consequently the arc E » must fall
within E M. Therefore, in either case, all the circles
that can be described through E fall without both
ER and EM, or within them both; and no @
whatever can pass between them when the rectangle
MT x TK is always = ET?, and the curve in
which K is always found passes through B; 7. e. the
© E R B and the curve E M have the same curva-
ture at E, which was the first part of the proposition.

Let E m, (Fig. 32) any other curve touching E T
in E, and £k B, another curve passing through B,
meet T K in m and Z ; and let the rectangle m T x
T % be likewise always = E T*; then the curvature
of Em at E shall be the same as that ofthe © ERB,
or that of the curve E M, by what has been demon-
stratedi. Because mT x T4E MT x TK, RT
X T Q are equal to each other, Tm : T M :: T K
:TkhkandTm : TR ::TQ: Tk  Therefore if
the arc B  pass between B K and B Q, the curve E
m must pass between M and E R so that E m must
have a closer contact with this ®, than E M hgs
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with it : and the less the £ is, that is formed by the
curve F K B and the @ of curvature EQB at B, the
closer is the contact at E of the carve EM H, and
the ® of curvature E Q B. Thus the curve BK F,
by its intersection with E B, determines the curva-
ture of K M ; and by the £ in which it cuts the ®
of curvature it determines the degree of contact of E
M and that © 5 the £, B ET and theright line ET
being given. .

Cor.1. Since MT x TK = ET*, TK =
E T
MT o 2
it, then will T K ultimately coincide with, and be
equal to, 5 B .". in all cases, whatever be the curve,
the chord of the @ of curvature = the ultimate

ET E M?

value of ——, or = the ultimate value of 2
MT MT

. Now let M move up to I and coincide with

Cor. 2. It appears from the demonstration, that
according as the arc B K falls without or within the
arc B Q, the atrc E M falls without or within the ®
E R B; that when the curve F K B cutsthe ® ERB
in B, the curve H M E cuts the ® of curvature in
E; that when the curve I'K B is on the same'side of
the ® BQ E on both sides of B, the curve H M E;
continued on both sides of E, is on the same side of
the ® of curvature : and that the contact ‘of the curve
E M H and the ® of curvature is closest when the
curve B K touches thearcs B Q in B, the Z BET
being given; but is farthest from this, or is most open,
when B K touches the right line £ B in B.

Cor. 3. 'There may be indefinite degrees of more
and more intimate contact between a @ ER B and
a curve EM H. The 1st degree is when the same
right line touches them both in the same point; and
a contact of this sort may take place betwixt any O,
and any arc of any curve.  The 2d is when the curve
EM H and ® E R B have the same curvature, and
the tangents of the curve BK I and ® B Q L inter-
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sect each other at B in any assignable angle. The
contact of the curve E M and ® of curvature E R
at E is of the 8d degree or order, and their oscula-
tion is of the 2d when the curve B K F touches the
©® B Q E at B, butso as not to have the same curva-
ture with it. The contact is'of the 4th degree or or-
der, and their osculation of the 3d, when the curve
B K F has the same curvature with the ® BQ E at
B, but so as that their contact is only-of the 2d de-
gree: and this gradation of more and more intimate
contact, or of approximation towards coincidence,
may be continued indefinitely ; the contact of E M
and E R at E being always of an order two degrees
closer than that of BK and BQ at B. There is al-
so an indefinite variety comprehended under cach
order. Thus when EM and E R have the same
curvature, the £ formed by-the tangents of B K and
B Q admits of indefinite variety, and the contact of
E M and E R is the closer the less that £ is. And-
when that £ is of the same magnitude, the contact
of EM and E R is the closer the greater the @ of
curvature is; for since TR : TM (1 TK:TQ,
dive. R'M  (which subtends the £ of contact
MER): TR::KQ:TK, and . RM: KQ::
RT x TQ(ET*): KT x TQ; .. when E Tis
" K

———————,and wh
KT x TQ and when K Q (or

4 KBQ) is given, R M is less, in proportion as
the rectangle KT X T Q, which ultimately =
chord of curvature?, is greater. When BK touches
the ® B Q at B, it:may touch it on the same or on
different sides of their common tangent; and the £
of contact K B Q may admit of the same variety with
the £ of contact M E R in the former case.  But
there is seldom occasion for considering these higher
degrees of more intimate contact of the curve E M H,
and ® of curvature E R B.

Cor. 4.. The curvature is uniform in the ® only.

L

given, R M varies as
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‘When the curvature of E M H encreases from E to-
wards H, and consequently corresponds to that of a
© graduglly less and less, the arc E M falls within
E R, and BK is within B Q. When the curyature
of E M decreases from E towards H, and conse-
quently corresponds to that of a @ that js gradually
greater and greater, the arc & M falls without E R,
and B-K is.without B Q. According as the curva-
ture:of F, M varies more or less, it is more or less
unlike to the uniform curvature of a ®, the arc of
the curve E M H separates more or less from the are
of the ® of curvature E R B, and the £ contained
by the tangents of B K I and BQ E at B is greater
or less, And thus the guality of curvature, (as it is
called by Sir I. Newton) depends on the £ contain-
e by the tangents of B K and B Q at B.

Cor. 5. Let the curve E M H for example, (Fig.
83) be a pargbola, I B a diameter, E T the tangent
at E, then because parameter X TM = ET* =
M T x TK, TK is always = the parameter,
»'» in this case B K is a straight line parallel to the
tangent E T, which intersecis E B in B, so that E B
is = that parameter. Therefore if upon the diame-
ter of a parabola, a right line E B be taken from E
the vertex of this diameter = to its parameter, a @
E R B, described upon this right line as its chord,

‘that touches the parabola at K, shall be the @ of

curvature. And because the right line BK cutsthe ©
B Q E in B, unless when E is the vertex of the figure,
the parabola cuts the @ of curvature (that case ex-
cepted) ; and passes within the ® of curvature when
it is produced towards the vertex, but without it when
produced the contrary way.

Cor. 6. When E B does not meet with the curve
FK, (Fig. 84) but is its asymptote; any © being
described touching E T in K, a greater ® shall al-
ways pass between it and the curve E M; and the
greater this © is, the closer shall its contact be with
the curve E M. For since the curve F K produced
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passes without any ® E Q B, how great soever, that
can be deseribed through E, E M must always pass
betwixt E R and the tangent E T, This is the case
in which the curvature is said to be infinitely small,
(being less than that of any ®) or the ray of curva-
ture infinitely great. Of this we have an example in
the vertex of the cubical parabola; for in that case
ET} = TM x a* (where a* is a given square) .
ET? E T 2
— = g* = oo =T'K
THE e N o T mo
ET, hence ET x T K = the given square a*; ."
the curve FK is the common hyperbola, whose
asymptotes are £ B and ET. The curvatare is of
the same kind at the-vertex of any parabola, wherein
T M is as any power of E T, whose exponent ex-
ceeds 2; for I' K, in all those cases, .is.an hyperbola,
of which E B is an asymptote. , ,
Cor. 7. When the curve F K (" Fig. 85) passes
through E, no ©® can be described through E so
small, but a less ® shall pass between it and the
curve E M, and the less this @ is, the eloser shall its
contact with E M be. For since the curve F K pas-
ses within any @ that can bé described through E
on the same side of E T, the arc E M isalways with-
in E R. In this case, because the curvature surpassés
that of any @, it is said to be infinitely great, or the
ray of curvature to be infinitely small. . Of this we
have an example at the vertex or.cuspid of the semi-
cubical parabola; for in that case E T? = M T* x

» il i g 4 o3 TS
a, (where ¢ is a given line) .- e = % and
E T+ T BT 0 T K E T+
= ;5 but =— = .'a
TU TRl e T * 1 T
=TK* hencea x ET = TK?*; .. FKEisthe
common parabola, whose latus rectum = @, and

which touches E B in E.
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of EL: B Dis that of AE*: A B* (by Lem.) or
that of AF* : AB*orthatofl1: 4 (for AF, AE
are ultimately equal). But BD:FL::AB:AF
:24:2, . EL: F L ultimately :: I : 2, eonsequent-
ly F E, E L are ultimately equal, and .. E F is ulti-
mately to BD 1 1:4. In like manner ¢ f is ulti-
matelytodd:i1.: 4; S EF:BDilef:bd ulti-
mately, and EF : ¢/ I BD: b d ultimately; but
B D, b d converge to a given point K, .. (Lem. Case
3), the points B, b meeting in A, BD, &d and con-
sequently E T, e f are ultimately as the squares of
AB, Ab.

Lemma 11.~Cor. 5.

57. By Cor. 1. A C: Ac:: CB* : ¢4 ultimately,
(Fig. 88) which is the property. of the parabola; .".
the curve A B, whatever be its nature, provided it be
of finite curvature (see Schol.) may ultimately be con-
sidered as a parabola; .. the curvilinear area A C B
= % CD ultimately, and consequently the eurvilinear
area AD B = ¥ CD ultimately = 3 ofthe o ADB
ultimately, and consequently the remainder, the seg-
ment A B, = 5 o A D B ultimately; but A ADB
varies as A D? or A B3 ultimately (Cor. 4); .". also the
curvilinear area AD B and segment AB vary as
A D3 or A B? ultimately.

SCHOLIUM.

Introductory Articles to Scholiun:.

38, Prop. 1. ' Let there be two curves of any kind (Fig. 39)
A B, Ab, and suppose the £ of contact B AD in the 1st case to
be indefinitely greater than the L of contact b A D in the other ;
then shall the curvature of A B be indefinitely greater than thet
of & b; and conversely. 7
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Again A1 : A iinthe ultimate R°. of 0D : BD;
but the R°. of A I: A / is finite by hypothesis .". the
ultimate R°, of 6 D : B D, and consequently that of
the £5. of contact, is finite.

Cor. 1. Let A B be any @, then since the curva-
turc of a @ is always finite, it is manifest that the
curvature of all curves, whose £° of contact bear a
finite R°. to that of this ®; or, which is the same
thing, the subtenses of whose £° of contact bear nlti-
mately a finite R°. to that of this @, will be finite;
and if the Jimiting R°. of the subtenses of the £ of
contact of the curve and ‘® be not only finite, but
also a R°. of equality, then the curve and ® have the
same curvature at the point of contact.

1 1
Cor.2. Since Al : Ai :l5—= 1 5=, the cur-
BD " »D’
vaturcs of two curves are to each other as the £° of
contact, or as the ultimate subtenses of these angles.

Scholium.

60. In the above Lemma, the £ of contact is sup-
posed to bear a finite R°. to that of a @, 7. e the
curvature is supposed to be neitlier indefinitely great,
nor indefinitely small (Cor. 1. Art. 59.) This is
manifest from the Lemma itself, which was proved on
the supposition’ that the diameters A G, A g had a
limit, viz. A I; 7. e. that the curve had a ® of curva-
ture. To shew, however, this in another point of
view, it may be worth while to prove (1) That, con-
versely to the Lemma, if BD vary as A D* ulti-
mately, the curvature of A B is finite. (2) That if
B D ultimately vary in any other R°. greater or less
than that of A D?, the curvature is not finite, but.in-
finitely small or infinitely great. (3) That there may
be curves, whose eurvatures are indefinitely great or
indefinitely small, and again curves, whose curvatures
are indefinitely greater or: indefinitely smaller than
that of those others, and so without end; and thus
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vided it be greater than 2) may be any N°. whatever,
whole or fractional. -

Next let B D (Fig. 40) ultimately vary in any

Re. less than that of A D?, for instance A D32, then

AD; A Di

B D ultimately = ——, ...BD : ED :: ol

P 4

as a%
1 N AV .
ultimately, 7. e. 11 —— : A D31 ultimately;
a

2%

but in the ultimate state, A D1 is indefinitely less than

AV ‘
» whatever be the value of AV provided it be

finite ; .. E D is ultimately indefinitely less than B D,
and .". the carvature of A B is indefinitely great; . e..
there can be no ®, however small,” which does. not
pass without the curve (by Art. 58); as appeared also
trom Cor. 7, Art. 54, And the same may be shewn
when B D ultimately varies as A D4, A D§, A D¢
weeA DY where n (provided it be less than 2) may
be any fractional N°, whatever.

(8) (7) Let BD ( Fig. 42) ultimately vary as A D?,
then, as we have seen above, the curvature of A B is
finite.

(77) Let AP beanother curve, such that D P ulti-
mately varies as A D3 then will D P ultimately =

A D}

(whe;e a and

; also B D ultimately =

A b
b are proper constant quantities); . BD : PD
A DZ A DZ a*

ot i ultimate]y,::—b— : A D ultimately;

a*
but A D is ultimately indefinitely less than - .4

P D is ultimately indefinitely less than BD, or cur-
vature of A P is indefinitely small, as we have before
seen. :
{777) Again, let A C be another curve, such that
M
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produced in a given time is the measure by which
gravity is said to be greater or less ; then it is called
the accelerating force of gravity.

This accelerating force of gravity is in all cases
found to be invariably the same at equal distances
from the centre of the same attracting body, and to
vary according to some regular law of the distance
from that centre; and hence it is, that the variation
of this force is usually expressed in terms of the dis-
tance from the centre of the attracting body ; for in-
stance, when it is said that gravity varies as the ns
power  of the distance, the expression denotes:that
the. accelerating force of gravity (measured by the
velocity uniformly generated in a given time) in-
creases: or decreases as the nt* power of the dis-
tance from the centre increases or decreases ;. and F
= D" is called the law of the accelerating force.

(2) Again we may say that the gravity exerted
upon a cubicinch of gold is greater than that upon a
cubic inch of cork. Here we no longer refer to the
same. measure as before, but mean by the Prop. that
the .quantity . of motion, uniformly generated.in' a
igiven time in the gold, is greater'than that uniform-
y generated in.the same time in the cork, when
placed at an equal distance from the attracting body’s
centre ; or in other words, that the weight of the gold
is greater than the weight of the cork. The word,
when used in this second sense, is called the motive
force of gravity, and as, when speaking of gravity at
different distances from the centre of the same at-
tracting body, we mean the accelerating force of gra-
vity ; so, when speaking of the gravity exerted upon
different bodies at the same distance, the motive force
of gravity is to be understood. . Hence the following
definition. . ¢ When gravity is considered as greater
or less in proportion to the quantity of motion it uni-
formly produces.in a given time, then it is called the
motive force of gravity.’ K

The only difference then betwixt the accelerating
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and motive force of gravity is this, that inasmuch as
gravity produces both velocity and momentum, we
call it one or the other, according, as for the sake of
convenience, the velocity or momentum is taken to
be the measure of it.

(8) Lastly, we frequently speak of the gravity of
different attracting bodies, as when we say that the
gravity of the earth is greater tha