
'



:

\











THE

FIRST THREE SECTIONS

OF

COPIOUS NOTES AND ILLUSTRATIONS,

AND

A GREAT VARIETY OF DEDUCTIONS
AND PROBLEM^.

Designedfor the Use of Students.

BY THE REV. JOHN CARR, M.A.,
LATE FELLOW OF TRINITY COLLEGE. CAMBRIDGE.

LONDON:
PRINTED FOR BALDWIN, CRADOCK, AND JOY ;

AND MAT BE HAD OF DEIGHTON, CAMBRIDGE; PARKER, OXFORD ;
I.MV,

'AND SOV, KDINBUEGH ; CHALMERS AND COLLINS, GLASGOW ;

AND ALL OTHER BOOKSELLERS.

1821.



Printed lnj FnAScis HUMBLE % Co.

Durham,



INTRODUCTION.

THE following Compilation was drawn up at a time when the

difficulties, which usually present themselves on a first perusal of

the Principia, were fresh in the recollection of its Author.

Upon a late accidental revision of it he was induced to think

that it might, if printed in a convenient form, prove an useful

guide to those, who not enjoying the benefits of Academical

or other instruction, are yet desirous of becoming acquainted

with so much at least of the Principia, as is necessary to a clear

comprehension of the more prominent and obvious laws of the

Planetary System. Perhaps even to the regularly educated

Student it may not be wholly unacceptable as a book of occa-

sional reference; inasmuch as, besides the Commentary properly

so called, it will be found to contain, carefully arranged under

proper heads, all or most of those Problems and Deductions

from the Text, which, after having been collected by the Student

at the expence of much time and trouble, are' usually entered

without any great regard to order or connexion, in the pages

of his Manuscript.

The following is the plan and arrangement of this Treatise.

I. Newton's text entire, with the exception of Props. 3, 5,

and 17; Lemmas 12, 13, and 14, relating to well-known pro-

perties of the Conic Sections ; a few of the Scholia ; and the
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ulitcr proof's in the 2d and 3d Sections ; all of which, as being

of less general use and application, might, it was conceived, be

omitted without injury to the work.

II. A general Introduction to the three Sections, comprising

a concise account, with Examples, of the Methods of Exhaus-

tions and Indivisibles, and the doctrine of Limits.

III. Notes explanatory ofNewton's text. In this part, which

forms the main body of the Treatise, the following method has

been invariably adhered to. (j) Each Lemma and Proposition

is prefaced, wherever the subject appeared to require it, with

such introductory remarks as were thought necessary to prepare

the reader for Newton's demonstration, (jj) The Lemma or

Proposition itself, where any difficulty occurs, h explained in as

distinct and familiar a way as the subject would admit of.

(jjj) At the end of each will be found subjoined, under the ap-

pellation of Notes, such further remarks, deductions, and prob-

lems as the Proposition under consideration seemed naturally to

suggest.

IV. A collection of Miscellaneous Problems, with their solu-

tions.

The reader will observe that the short account given of the

doctrine of Exhaustions and Indivisibles, and also Arts. 52, 53,

and 54, on curvature, have been extracted almost wholly from

Maclaurin j and as utility has been his sole object, the Com-

piler of the following sheets has throughout unreservedly bor-

rowed from every valuable source within his reach.

Should this attempt be favourably received by those for'whose

use it is exclusively designed, and the Author's leisure permit,

the 7th and 8th Sectfons may probably follow, upon precisely

the same plan.



MATHEMATICAL PRINCIPLES

OF

SECTION I.

OF THE METHOD OF PRIME AND ULTIMATE RA-

TIOS, BY THE HELP OF WHICH THE FOLLOWING
PROPOSITIONS ARE DEMONSTRATED.

LEMMA I.

Quantities, and the ratios of quantities, which,

in anyjinite time, tend continually to equality;

and, before the end of that time, approach

nearer to each other than by any given dif-

ference, become ultimately equal.

you deny it, let them be ultimately unequal ; and

let theif ultimate difference be D. Therefore they

cannot approach nearer to equality than by that given

difference D. Which is against the supposition.

A



LEMMA II.

Ifin anyjigure Aac E, terminated by the right

lines A a, A E, and the curve a c E, there

are inscribed any number of parallelograms
A b, Be, C d, $c. contained under equal
bases A B, B C, C D, $c., and the sides B b,

C c, D d, Sfc. parallel to A a, the side of the

Jigure ; and the parallelograms a K b I, b L
cm, c M d n, <$?c.

are completed. Then, if

the breadth of those parallelograms is dimin-

ished, and their number is augmented conti-

nually ; I say, that the ultimate ratios, \uhich

the inscribed Jigure A K b L c M d D, the

circumscribedJigure AalbmcndoE, and

the curvilinear Jigure A a b c d E, have to

each other, are ratios of equality. (Fig.

For the difference of the inscribed and circumscri-

bed figure is the sum of the parallelograms K /, L m,

M n, D o, that is (because of the equality of all their

bases,) the rectangle under one of their bases K b,

and the sum of their altitudes A a ; that is, the rec-

tangle A B I a. But this rectangle, because its breadth

A B is diminished indefinitely, becomes less than any

given rectangle. Therefore (by Lem. I.) the inscri-

bed and circumscribed, and much more the inter-



mediate curvilinear figure become ultimately equal.

Which was to be demonstrated.

LEMMA III.

The same ultimate ratios are also ratios oj

equality, 'when the breadths A B, B C, CD,
c. of the parallelograms are unequal, and

are all diminished indefinitely.

v

For let A F be equal to the greatest breadth ^ and

let the parallelogram FA#ybe completed. This

will be greater than the difference of the inscribed

and circumscribed figures; but, because its breadth

A F is diminished indefinitely, it will become less

than any given rectangle. Which was to be demon-

strated.

Cor. 1. Hence the ultimate sum of the evanescent

parallelograms coincides in every part with the cur-

vilinear figure.

Cor. 2. Much more does the rectilinear figure,

which is comprehended under the chords of the

evanescent arcs abt be, cd, &c. ultimately coincide

with the curvilinear figure.

Cor. 3. As also the circumscribed rectilinear figure,

which is comprehended under the tangents of the

same arcs.

Cor. 4>. And, therefore, these ultimate figures (as



to their perimeters a c E,) are not rectilinear, but

curvilinear limits of rectilinear figures.

LEMMA IV.

If in two figures A a c E, P p r T, there are

inscribed (as before} two series ofparallelo-

grams, an equal number in each ; and, their

breadths being diminished indefinitely, if the

ultimate ratios of the parallelograms in one

Jigure to those in the other, each to each re-

spectively, are the same ; I say, that those

two Jigures A a c E, P p r T, are to each

other in that same ratio. (Fig. 2.)

For, as the parallelograms in one are severally to

the parallelograms in the other ; so, by composition,

is the sum of all in one to the sum of all in the other;

and so is one figure to the other ; because (by Lem.

III.) the former figure is to the former sum, and the

latter figure to the latter sum, in the ratio of equality.

Which was to be demonstrated.

Cor. Hence, if two quantities of any kind are any
how divided into an equal number of parts: and those

parts, when their number is augmented, and their

magnitude diminished indefinitely, have a given ratio

to each other, the first to the first, the second to the

second, and so on in order ; the whole quantities will
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be, one to the other, in that same given ratio. For,

if in the figures of this Lemma, the parallelograms

are taken to each other in the ratio of the parts, the

sum of the parts will always be, as the sum of the

parallelograms : and, therefore, the number of the

parallelograms and parts being augmented, and their

magnitudes diminished indefinitely, those sums will

be in the ultimate ratio of the parallelogram in one

figure, to the correspondent parallelogram in the

other; that is, (by the supposition) in the ultimate

ratio of any part of the one quantity to the corres-

ponding part of the other.

LEMMA V.

All homologous sides of similar figures, whe-

ther curvilinear or rectilinear', are propor-

tional ; and the areas are in the duplicate

ratio ofthe homologous sides.

LEMMA VI.

Ifany arc A C B, given in position, is subtend-

ed by its chord A B, and in any point A, in

the middle ofa continued curvature, is touch-



al by a right line AD, produced both ways ;

then, if the points A and B approach one

another and meet ; I say that the angle B A
D, contained between the chord and the tan-

gent, will be diminished indefinitely, and will

ultimately vanish. (Fig. 3.)

For, if that angle docs not vanish, the arc A C B
will contain with the tangent AD an angle equal to

a rectilinear angle; and, therefore, the curvature at

the point A will not be continued. Which is against

the supposition.

LEMMA VII.

The same things being supposed, I say, that

the ultimate ratio of the arc, the chord, and

the tangent, to each other, is the ratio of

equality.

For, while the point B approaches towards the

point A, let A B and A D be considered as produ-

ced to the remote points b and d, and let b d be drawn

parallel to the secant B D. Let the arc A c b be al-

ways similar to the arc A C B. Then, supposing the

points A and B to coincide, the angle d A b will van-

ish, by the preceding Lemma ; and, therefore, the

right lines A b, Ad, which are always finite, and the

intermediate arc A c b will coincide, and become



equal among themselves. Wherefore, the right line*

A B, AD, and the intermediate arc A C B, which

are always proportional to the former, will vanish ;

and will ultimately acquire the ratio of equality ^

Which was to be demonstrated.

Cor. 1. (Fig. 4.) Whence, if through B be drawn

B F parallel to the tangent, always cutting any right

line A F, passing through A, in F; this line B F will

ultimately have the ratio of equality to the evanescent

arc A C B ; because, completing the parallelogram

A F B D, it always has the ratio of equality to A D.

Cor. 2. And, if through B and A more right lines

are drawn, as B E, BD, A F, A G, cutting the tan-

gent A D, and its parallel B F ; the ultimate ratio of

all the abscissas A D, A E, B F, B G, and of the

chord, and arc A B, to each other, will be the ratio

of equality.

Cor. 3. And, therefore, in all our reasonings about

ultimate ratios, we may freely use any one of these

lines for any other.

LEMMA VIII.

If the right lines A It, B R, with the arc A C B,

the chord A B, and the tangent A D, consti-

tute three triangles It AB, RACE, RAD,
and then the points A and B approach to

each other ; I say, that the ultimateform of



the evanescent triangles is that ofsimilitude,

and the ultimate ratio that of equality.

(Fig. 3.)

For, while the point B approaches towards the

point A, consider always A B, A D, A R, as produ-

ced to the remote points b, d, and r , and r b d, as

drawn parallel to R D ; and let the arc A c b be al-

ways similar to the arc A C B. And, supposing the

points A and B to coincide, the angle b A d will van-

ish ; and, therefore, the three triangles r Ab, r Acb,
r A dt which are always finite, will coincide ; and, on

that account, become both similar and equal. There-

fore the triangles R A B, R A C B, RAD, which

are always similar and proportional to these, will ul-

timately become both similar and equal among them-

selves. Which was to be demonstrated.

Cor. And hence, in all our reasonings about ulti-

mate ratios, we may indifferently use any one of these

triangles for any other.

LEMMA IX.

Ifa right line A E, and a curve line ABC,
given in position, cut each other in a given

angle A ; and to that right line, in another

given angle, B D, C E are ordinately ap-

plied, meeting the curve in B, C ; and the



points B and C together approach towards

the point A : / say, that the areas ofthe tri-

angles A B D, ACE, will ultimately be, one

to the other, in the duplicate ratio of the

sides. (Fig. 5.)

For, while the points B, C approach towards the

point A, suppose always A D to be produced to the

remote points d and e, so that A d, Ae, may be pro-

portional to AD, A E : and let the ordinates d b, ec9

be erected parallel to the ordinates D B, E C, and

meeting A B, A C produced in b and c. Let the

curve A b c be drawn similar to the curve ABC;
and also the right line Ag, which may touch both

curves in A, and cut the ordinates D B, E C, db, ec,

in F, G,f, g. Then, supposing the length A e to re-

main the same, let the points B and C meet in thepoint

A; and, the angle c Ag vanishing, the curvilinear

areas Abd, Ace, will coincide with the rectilinear

areas Afd, Age; and, therefore, (by Lem. V.) will

be in the duplicate ratio of the sides A d, Ae. But

the areas ABD, ACE, are always proportional to

these areas ; and the sides AD, A E to these sides.

Therefore also, the areas ABD, ACE are ulti-

mately in the duplicate ratio of the sides AD, A E.

Which was to be demonstrated.
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LEMMA X.

The spaces, which a body describes by any

Jinite force urging it, whether that force is

determined and immutable, or is continually

augmented or continually diminished, are, in

the very beginning of the motion, in the du-

plicate ratio of the times.

Let the times be represented by the lines A D, A
; and the velocities generated in those times by the

ordinates D B, EC: and the spaces, described with

these velocities, will be as the areas A B D, ACE,
described by these ordinates ; that is, at the very be-

ginning of the motion (by Lem. IX.) in the duplicate

ratio of the times AD, A E. Which was to be de-

monstrated.

Cor. 1. And hence it is easily inferred, that the

errors of bodies, describing similar parts of similar

figures in proportional times, which are generated by

any equal forces, similarly applied lo the bodies, and

are measured by the distances of the bodies from

those places of the similar figures, at which, without

the action of those forces, the bodies would have ar-

rived in those proportional times, are nearly in the

duplicate ratio of the times in which they are gene-

rated.

Cor. 2. But the errors, which are generated by

proportional forces, similarly applied, at similar parts
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of similar figures, are as the forces and the squares of

the times jointly.

Cor. 3. The same thing is to be understood of any

spaces whatsoever, described by bodies which are

urged with different forces. These are, in the very

beginning of the motion, as the forces and the squares

of the times jointly.

Cor. 4>. And, therefore, the forces are as the spaces

described in the very beginning of the motion direct-

ly, and the squares of the times inversely.

Cor. 5. And the squares of the times are as the

spaces described directly, and the forces inversely.

LEMMA XL

The evanescent subtense of the angle ofcontact,

in all curves, which at the point of contact

have a finite curvature, is ultimately in the

duplicate ratio of the subtense of the conter-

minous arc. (Fig. 6.)

Case 1. Let A B be that arc, AD its tangfent,

B D the subtense of the angle of contact perpendicu-

lar to the
tangent, A B the subtense of the arc. Let

A G, B G be erected perpendicular to the subtense

A B and the tangent A D, meeting in G ; then let

the points D, B, G, approach to the points d, b, g ;

and let I be the ultimate intersection of the lines BG,
A G, supposing the points D, B, to approach conti-



nually to A. It is evident, that the distance G I may
be less than any assignable. But, (from the nature

of circles passing through the points ABG, A&g)
AB* = AG X BD, and A6* = Ag X bd; and

therefore, the ratio of A B* to A b z
is compounded

of the ratios of A G to A g, and of B D to b d. But,

because G I may be assumed less than any assignable

length, the ratio of A G to A g may differ from the

ratio of equality, less than by any assignable differ-

ence
; and, therefore, the ratio of A B* to A r may

differ from the ratio of B D to b d, less than by any

assignable difference. Therefore, by Lem. I. the ul-

timate ratio of A Ba to A If is the same with the

ultimate ratio of B D to b d. Which was to be de-

monstrated.

Case 2. Let B D be inclined to A D in any given

angle, and the ultimate ratio of B D to b d will always

be the same as before; and, therefore, the same as

the ratio of A B3 to A b*. Which was to be demon-

strated.

Case 3. And, although the angle D is not given,

but the right line B D converges to a given point, or

is determined by any other condition whatever ; yet

the angles D, </, being determined by the same law,

will always converge to equality, and approach nearer

to each other than by any assigned difference ; and

by Lem. I. will be ultimately equal; and, there-

fore, the lines B D, b d are in the same ratio to each

other as before. Which was to be demonstrated.

Cor. 1 . Therefore, since the tangents AD, At/,
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the arcs A B, A &, and their sines B C, I c, become

ultimately equal to the chords A B, A b
,- their

squares also will ultimately be as the subtenses B D,

ltd.

Cor. 2. The same squares are also ultimately as

the versed sines of the arcs, which bisect the chords,

and converge to a given point. For those versed

sines are as the subtenses B D, b d.

Cor. 3. And, therefore, the versed sine is in the

duplicate ratio of the time, in which a body describes

the arc with a given velocity.

Cor. 4. The rectilinear triangles A D B, A d b are

ultimately in the triplicate ratio of the sides AD,
A d ; and in the sesquiplicate ratio of the sides D B,

d b ; as being in the compound ratio of the sides AD
and D B, A d and d b. So also the triangles ABC,
A b c are ultimately in the triplicate ratio of the sides

B C, be. What I call the sesquiplicate ratio is the

subduplicate of the triplicate, which is compounded
of the simple and subduplicate ratio.

Cor. 5. And, because D B, d b, are ultimately

parallel, and in the duplicate ratio of A D, A d, the

ultimate curvilinear areas A D B, A d b will be (by

the nature of the parabola) two-thirds of the recti-

linear triangles A D B, A.dbj and the segments AB,
A b will be one-third of the same triangles. And

hence these areas, and these segments, will be in the

triplicate ratio, as well of the tangents AD, A d, as

of the chords and arcs A B, A b.



SCHOLIUM.
But, we have all along supposed the angle of con-

tact to be neither indefinitely greater, nor indefinitely

less, than the angles of contact, which circles contain

with their tangonts ; that is, that the curvature at the

point A is neither indefinitely small, nor indefinitely

great ; or, that the interval A I is of a finite magni-
tude. For D B may be taken as AD 1

: in which

case, no circle can be drawn through the point A,

between the tangent A D, and the curve A B, and

therefore the angle of contact will be indefinitely less

than circular angles. And, by a like reasoning, if

DB be made successively as AD 4
, AD J

, A D ff

,

AD 7
, &c. we shall have a series of angles of contact

proceeding continually, whereof every succeeding

series is indefinitely less than the preceding. And if

*

D B be made successively as AD*, ADT
, A D $

5

5 6 7

A D*, AD J

, AD*, &c. we shall have another

series of angles of contact, the first of which is of the

same kind with those of circles, the second indefi-

nitely greater, and every succeeding one indefinitely

greater than the preceding. But, between any two

of these angles, another series of intermediate angles

of contact may be interposed, proceeding both ways

indefinitely, whereof every succeeding angle shall be

indefinitely greater, or indefinitely less than the pre-

ceding. As if, between the terms A D*, and A D J

,

it II 9

there was interposed the series A D 7
, A D , AD*,

ADT, AD^, AD^, AD", AD V
*

AD'',
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&c. And again, between an}' two angles of this se-

ries, a new series of intermediate angles may be inter-

posed, differing from one another by intervals inde-

finitely great. Nor is nature confined to any limit.

Those things, which have been demonstrated of

curve lines, and the surfaces which they comprehend,

are easily applied to the curve surfaces and contents

of solids. But I premised these Lemmas to avoid

the tediousness of deducing long demonstrations to

an absurdity, according to the method of the ancient

geometers. For demonstrations are rendered more

concise by the method of indivisibles. But, because

the hypothesis of indivisibles is somewhat harsh, and

therefore that method is esteemed less geometrical, I

chose rather to reduce the demonstrations of the fol-

lowing propositions to the prime and ultimate sums

and ratios of nascent and evanescent quantities ; that

is, to the limits of those sums and ratios : and so to

premise the demonstrations of those limits, as briefly

as I could. For hereby the same thing is performed,

as by the method of indivisibles ; and those principles

being demonstrated, we may now use them with more

safety. Therefore, if hereafter I shall happen to con-

sider quantities, as made up of particles, or shall use

little curve lines for right ones, I would not be un-

derstood to mean indivisible, but evanescent divisible

quantities ; not the sums and ratios of determinate

parts, but always the limits of sums and ratios : and,

that the force of such demonstrations always depends

on the method laid down in the preceding Lemmas.



SECTION II.

OF THE INVENTION OF CENTRIPETAL FORCES.

PROPOSITION I. THEOREM I.

That the areas, which revolving bodies de-

scribe by radii, drawn to an immoveable cen-

tre offorce, do both lie in the same immove-

able planes, and are proportional to the times

in which they are described. (Fig. 7.)

Let the time be divided into equal parts, and in

the first part of time, let the body, by its power of

persevering in its state of uniform motion in a right .

line, describe the right line A B. In the second

part of time, the same would, if not hindered, pro-

ceed directly to c, describing the line B c equal to

A-B; so that by the radii AS, B S, cS, drawn to

the centre, the equal areas A S B, B S c, would be

described. But when the body is arrived at B, let

a centripetal force act at once, with a strong impulse,

and make the body turn aside from the right line
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B, and afterwards continue its motion along the

right line B C. Draw c C parallel to B S, meeting
B C in C ; and, at the end of the second part of time,

the body will be found in C, in the same plane with

the triangle A S B. Join S C ; and, because S B
and C c are parallel, the triangle SBC will be equal

to the triangle S B c, and therefore also to the triangle

SAB. By a like argument, if the centripetal force

acts successively in C, D, E, &c. making the body,

in each single particle of time, to describe the several

right lines CD, D E, E F, &c. they will lie in the

same plane ; and the triangle S C D will be equal to

the triangle S B C, and S D E to S C D, and S E F
to S D E. Therefore, in equal times, equal areas are

described in one immoveable plane : and, by compo-

sition, any sums S A D S, S A F S, of those areas

are to each other, as the times in which they are de-

scribed. Let the number of those triangles be aug-

mented, and their breadth diminished indefinitely ;

and (by Cor. 4. Lem. III.) their ultimate perimeter

ADF will be a curve line : and therefore the centri-

petal force, by which the body is perpetually drawn

back from the tangent of the curve, will act continu-

ally ; and any areas described S A D S, S A F S,

which are always proportional to the times of descrip-

tion, will, in this case also, be proportional to those

times. Which was to be demonstrated.

Cor. 1. The velocity of a body, attracted towards

an immoveable centre in spaces void of resistance, is

reciprocally as the perpendicular let fall from that
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centre on the right line that touches the orbit. For

the velocities in those places A, B, C, D, E, are as

die bases AB, BC, CD, DE, EF, of equal triangles;

and these bases are reciprocally as the perpendiculars

let fall upon them.

Cor. 2. If the chords A B, B C, of two arcs, suc-

cessively described in equal times by the same body
in spaces void of resistance, are completed into a par-

allelogram A B C V, and the Diagonal B V of this

parallelogram, in the position which it ultimately ac-

quires, when those arcs are diminished indefinitely, is

produced both ways, it will pass through the centre

of force.

Or. 3. If the chords A B, B C, and D E, E F, of

arcs, described in equal times in spaces void of resis-

tance, are completed into the parallelograms ABC V,

D E F Z ; tlie forces in B and E are to each other

in the ultimate ratio of the diagonals B V and E Z,

when those arcs are diminished indefinitely. For the

motions B C, and E F of the body are compounded
of the motions B c, B V, and E/, E Z : but B V and

E Z, equal to C c and f, in the demonstration of

this proposition, were generated by the impulses of

the centripetal force in B and E, and are therefore

proportional to- these impulses.

Cot: 4. The forces, by which bodies in spaces void

of resistance are drawn back from their rectilinear

motions, and turned into curvilinear orbits, are to

each other, as those versed sines of arcs described in

equal times, which converge to the centre of force,



and bisect the chords, when those arcs are diminished

indefinitely. For such versed sines are half the dia-

gonals mentioned in Cor. 3.

Cor. 5. And, therefore, those forces are to the

force of gravity, as the said versed sines, to the versed

sines perpendicular to the horizon of the parabolic

arcs, which projectiles describe in the same time.

Cor. 6. The same things hold good when the

planes in which the bodies are moved, together with

the centres of force, which are placed in those planes,

are not at rest, but move uniformly in a right line.

PROPOSITION II. THEOREM II.

Every body that moves in any curve line de-

scribed in a plane, and by a radius drawn

to a point, either immoveable, or moving

forward with an uniform rectilinear motion,

describes about that point areas proportional

to the times, is urged by a centripetalforce

tending to that point.

Case 1. For every body, that Amoves in a curve

line, is turned aside from its rectilinear course by the

action of some force that impels it. And that force

by which the body is turned off from its rectilinear

course, and is made to describe, in equal times, the

very small equal triangles SAB, S B C, S C D, &c.



about the immoveable point S, acts, in the place B,

in the direction of a line parallel to c C ; that is, in

the direction of the line B S ; and in the place C, in

the direction of a line parallel to d D, that is, in the

direction of the line C S, &c.. It acts, therefore, al-

ways in the direction of lines tending to that immove-

able point S. Which was to be demonstrated.

Case 2.' And it is indifferent, whether the surface

in which a body describes a curvilinear figure is

quiescent ; or moves, together with the body, with the

figure described, and its point S, uniformly in a right

line.

Cor. 1. In spaces or mediums void of resistance,

if the areas are not proportional to the times, the

forces do not tend to the point in which the radii

meet; but deviate therefrom //* consequentia, or to-

wards the part to which the motion is directed, if the

description of areas is accelerated ; but in antecedentiay

if retarded.

Cor. 2. And, even in resisting mediums, if the de-

scription of areas is accelerated, the directions of the

forces deviate from the concourse of the radii, to-

wards the part to which the motion tends.

SCHOLIUM.

A body may be urged by a centripetal force com-

pounded of several forces. In this case, the meaning
of the proposition is, that the force, which is com-

pounded of all, tends to the point S. But/ any iC
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force acts perpetually in the direction of lines per-

pendicular to the described surface, this force will

make the body to deviate from the plane of its mo-

tion : but it will neither augment nor diminish the

quantity of the described surface, and is therefore to

be neglected in the composition of forces. '>

PROPOSITION IV. THEOREM IV.

That the centripetalforces ofbodies, which by

an equable motion describe different circles,

tend to the centres of the same circles ; and

are to each other, as the squares of the arcs

described in equal times, applied to the radii

ofthe circles.

These forces tend to the centres of the circles,

(Prop II. and Cor. 2, Prop. L) and are to each other

as the versed sines of arcs, described in equal times

indefinitely small (by Cor. 4. Prop. I.) ; that is, as

the squares of the same arcs, applied to the diameters

of the circles, (by Lem. VII.) and, therefore, since

these arcs are as the arcs described in any equal times,

and the diameters are as the radii ; the forces will be

as the squares of any arcs described in the same time,

applied to the radii of the circles. Which was to be

^demonstrated.

Cor. 1. Since those arcs are as the velocities of tht



bodies, the centripetal forces are in a ratio com-

pounded of the duplicate ratio of the velocities di-

rectly, and of the simple ratio of the radii
inversely.

Cor. 2. And, since the periodical times are in a

ratio compounded of the ratio of the radii directly,

and the ratio of the velocities inversely , the centri-

petal forces are in a ratio compounded of the ratio of

the radii directly, and the duplicate ratio of the pe-

riodical times inversely.

Cor. 3. Whence it appears, that if the periodical

times are equal, and therefore the velocities are as

the radii ; the centripetal forces will be also as the

radii ; and the contrary.

Cor. 4. If the periodical times and the velocities

are both in the subduplicate ratio of the radii ; the

centripetal forces will be equal among themselves :

and the contrary.

Cor. 5. If the periodical times are as the radii, and

therefore the velocities equal ; the centripetal forces

will be reciprocally as the radii : and the contrary.

Cor. 6. If the periodical times are in the sesquipli-

cate ratio of the radii, and therefore the velocities re-

ciprocally in the subduplicate ratio of the radii ; the

centripetal forces will be inversely in the duplicate

ratio of the radii : and the contrary.

Cor. 7. And universally, if the periodical time is

as any power Rn of the radius R, and therefore the

velocity reciprocally as the power R i ofthe radius;

the centripetal force will be reciprocally as the power
of the radius R * *

: and the contrary.



Cor. 8. The same things all follow concerning the

times, the velocities, and forces, by which bodies

describe the similar parts of any similar figures, that

have their centres in a similar position within these

figures, by applying the demonstration of the pre-

ceding cases to those. And the application is made,

by substituting the equable description of areas for

equable motion, and using the distances of the bodies

from the centres for the radii.

Cor. 9. From the same demonstration it likewise

follows, that the arc, which a body, uniformly re-

volving in a circle with a given centripetal force, de-

scribes in any time, is a mean proportional between

the diameter of the circle, and the space, which the

same body, descending by the same given force,

would describe in the same given time.

SCHOLIUM.
The case of the sixth corollary is applicable to the

celestial bodies (as our countrymen Sir Christopher

Wren, Dr. Hooke, and Dr. Halley, have severally

observed) ; and, therefore, in what follows, I intend

to treat more at large of those things which relate to

a centripetal force decreasing in a duplicate ratio of

the distances from the centres.

Moreover, by means of the preceding proposition

and its corollaries, we may discover the proportion

of a centripetal force to any other known force, such

as that of gravity. For if a body, by means of its

gravityj revolves in a circle concentric to the earth,



this gravity is its centripetal force. But, from the

descent of heavy bodies, the time of one entire revo-

lution, as well as the arc described in any given time,

is given (by Cor. 9 of this Prop.) And by such

propositions, Mr. Huygens, in his excellent book

De Horologio OsciUatorio, has compared the force

of gravity with the centrifugal forces of revolving

bodies.

PROPOSITION VI. THEOREM V.

Ifa body, in a space void ofresistance, revolves

in any orbit about an immoveable centre, and

in an indefinitely small time describes any
nascent arc ; and the versed sine of that arc

is supposed to be drawn, which may bisect

the chord, and being produced may pass

through the centre offorce ; the centripetal

force, in the middle of tfie arc, will be as the

versed sine directly and the square of the

time inversely.

For the versed sine, in a given time, is as the force

(by Cor. 4. Prop. I.) and increasing the time in any

ratio, because the arc will be increased in the same

ratio, the versed sine will be increased in the dupli-

cate of that ratio, (by Cor. 2 and 3, Lem. XL); and

therefore is as the force, and the square of the time.
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Subduct on both sides the duplicate ratio of the time,

and the force will be as the versed sine directly, and

the square of the time inversely. Which was to be

demonstrated.

And the same thing is also easily demonstrated by
Cor. 4-. Lem. X.

Cor. 1. (Fig. 8.) If a body P, revolving about

the centre S, describes a curve line APQ, and a

right line Z P R touches that curve in any point P ;

and, from any other point Q of the curve, Q R is

drawn parallel to the distance S P, meeting the tan-

gent in R ; and Q T is drawn perpendicular to the

distance S P ;
the centripetal force will be recipro-

SP* x QTa

cally as the solid ; if the solid is taken
QR

of that magnitude which it ultimately acquires, sup-

posing the points P and Q continually to approach
to each other. For Q R is equal to the versed sine

of double the arc Q P, in whose middle Is P : and

doublo, the triangle S Q P, or S P X Q T is propor-

tional to the time, in which that double arc is de-

scribed ; and therefore may be used for the exponent

of the time.

Cor. 2. By a like reasoning the centripetal force

s Y* x o P*
is reciprocally as the solid ~-^ ;

if S Y is a
Q R

perpendicular, let fall from the centre of force on

P R, the tangent of the orbit. For the rectangles

S Y x Q P and S P X Q T are equal.

Cor. 3. If the orbit is either a circle, or touches or

D
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cuts a circle concentrically, that i=, contains with a

circle an indefinitely small angle of contact or sec-

tion ; having the same curvature and the same radius

of curvature at%e point P ; and if P V is a chord of

this circle, drawn from the body through the centre

of forces ; the centripetal force will be reciprocally as

the solid S Y* X P V. For P V is~
Q R

Cor. 4. The same things beug supposed, the cen-

tripetal force is as the square of the velocity directly,

and that chord inversely. For the velocity is re-

ciprocally as the perpendicular S Y, by Cor. 1,

Prop. I.

Cor. 5. Hence, if any curvilinear figure A P Q is

given ; and therein a point S is also given, to which

a centripetal force is perpetually directed ; the law of

centripetal force may be found, by which the body

P, continually drawn back from a rectilinear course,

will be retained in the perimeter of that figure, and

will describe the same by a perpetual revolution.

That is, we are to find by computation, either the

O pj y f\ 'T'*

solid
*

or the solid SY3 X P V, re-

Q R

ciprocally proportional to this force. Examples of

this we shall give in the following Problems.

PROPOSITION VII. PROBLEM II.

Let a body revolve in the circumference of a
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circle ; it is required to find the law of cen-

tripetal force tending to any given point*

(Fig. 9.)

Let V Q P A be the circumference of the circle ;

S the given point, to which the force tends, as to a

centre ; P the body moving in the circumference ; Q
the next place into which it .is to move, and P R Z

the tangent of the circle at the preceding place.

Through the point S let the chord P V be drawn ;

and, the diameter V A of the circle being drawn, let

A P be joined ; and let fall Q T perpendicular to

S P, which produced may meet the tangent P R in

Z and lastly, through the point Q let L R be drawn,

which may be parallel to S P, and may both meet

the circle in L, and the tangent P Z in R. And,

because of the similar triangles ZQR, ZTP, VPA,
R Pa

, that is Q R L will be to Q Ta
, as A V* to

Q R L x P V*
P Vs

. And, therefore, T\f*~ ~> *s e(
l
ual to

A V

SP*
Q T*. Let these equals be multiplied into ,and

the points P and Q continually approaching, for R L
S P* X P V }

write P V. Thus we shall find - =
A V*

S P* x O T*
-. Therefore (by Cor. 1 and 5, Pro-

QR
position VI.) the centripetal force is reciprocally as

SP2 x PV 3

; that is (because A V* is given) reci-

A V*



procally as the square of the distance or altitude S P,

and the cube of the chord P V jointly. Which was

to be found.

Cor. 1. Hence, if the given point S, to which the

centripetal force always tends, is placed in the cir-

cumference of this circle, suppose at V, the centri-

petal force will be reciprocally as the quadrato-cube

(or fifth power) of the altitude S P.

Car. 2. (Fig. 10.) The force by which the

body P in the circle A P T V revolves about the

centre of force S, is to the force by which the same

body P may revolve in the same circle, and in the

same periodical time, about any other centre of force

R, as R P* X S P, to the cube of the right line S G,

which is drawn from the first centre of force S, to

the tangent of the orbit P G, and is parallel to the

distance P R of the body from the second centre of

force R.

For, by the construction of this proposition, the

former force is to the latter, as R P* x P T 1

to S P* X P V 3

; that is, as S P X R P* to

SP3 X PV3
; or (because of the similar triangles

PT3

PSG, TPV)toSG'.
Cor. 3. The force, by which the body P in any

orbit revolves about the centre of force S, is to the

force, by which the same body P may revolve in the

same orbit, and in the same periodical time, about

anv other centre of force R, as the solid S P X R P*,^ y

Contained under the distance of the body from the

first centre of force S, and the square of its distance



29

from the second centre of force R, to the cube of the

right line S G, which is drawn from the first centre

of force S to the tangent P G of the orbit, and is par-

allel to the distance R P of the body from the second

centre of force R. For the forces in this orbit, at

any point P, are the same as in a circle of the same

curvature.

PROPOSITION VIII. PROBLEM III.

Let a body move in the szmi-circumference

P Q A ; it is required tojind the law ofcen-

tripetal force, tending to a point S, so re-

mote, that all lines P S, R S drawn thereto,

may he takenfor parallel. (Fig. 11.)

From C, the centre of the semi-circle, let the semi-

diameter C A be drawn, cutting those parallels per-

pendicularly in M and N, and let C P be joined.

Because of the similar triangles C P M, P Z T, and

R Z Q, C P* is to PM3
, as PRa to QT* ; and, from

the nature of the circle, P R* is equal to the rectangle

Q R X R N + QN; or, the points P and Q con-

tinually approaching, to the rectangle QR X 2 PM.
Therefore C P* is to P M*, as Q R X 2 P M to

Q rP 2PM3 QT'XSP*
Q Ta

;
therefore - = -

, and
Q R C P* Q R

2 P M3 x S P3

tnere'ore (by Cor. 1 and



5, Prop. VI.) the centripetal force is reciprocally as

2PM ; X SPZ

; that is, (neglecting the given ratio
O 1

2 SP 1

-
) reciprocally as PM 3

. Which was to be
\~> f

found.

The same thing is likewise easily collected from the

preceding proposition.

SCHOLIUM.

And, by a like reasoning, a body will be found to

move in an ellipse, or even in an hyperbola, or para-

bola, by a centripetal force, which is reciprocally as

the cube of the ordinate, directed to a centre of force,

at a very great distance.

PROPOSITION IX. PROBLEM IV.

Let a lody revolve hi a spiral P Q S cutting

all the radii S P, S Q, 8$c. in a given angle,

it is required to Jind the law of centripetal

force, tending to the centre of that spiral.

(Fig. 12.)

Let the indefinitely small angle P S Q be given ;

and because all the angles are given, the species of

the figure of S P R Q T will be given. Therefore the
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QT QT*
ratio is given; ami is as Q T; that is,

(because the species of that figure is given,) as S P.

But if the angle P. S Q is any way changed, the right

line Q R, subtending the angle of contact Q P R

(Lem. XI.) will be changed in the duplicate ratio of

QT*PR or Q T. Therefore the ratio remains
QR

the same as before ; that is, as S P. Therefore

Q Ta x S Pa

is as S P 5

, and (by Cor. 1. and 5, Prop.
Q R

VI.) the centripetal force is reciprocally as the cube

of the distance S P. Which was to be found.

PROPOSITION X.-PROBLEM V.

Let a body revolve in an ellipsis : it is required

tojind the law of centripetal force, tending

to the centre of the ellipsis. (Fig. 13.)

Let C A, C B be semi-axes of the ellipsis, G P,

D K other conjugate diameters ; P F, Q T perpen-

diculars to those diameters ; Q v an ordinate to the

diameter G P; and if the parallelogram Qv P R is

completed, the rectangle P v G will be to Q a
, as PC*

to C D* : and (because of the similar triangles Q v T,

PCF) Q0 J
is to QTZ

, as PC* to PF*; and by
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composition, the ratio of PvG to QT* is compound-
ed of the ratio of PO to CD*, and of the ratio of

PC*, toPFa
; that is, v G is to 5JL* as po to

Pu
C Dz X P Fa

------ Substitute QR for Pr, and (by
JL v>

Lem. XII.) B C X C A for C D X P F, also (the

points P and Q continually approaching) 2 P C for

v G j and multiplying the extremes and means

Q Tz x PC 2

together, we shall have -- -

equal to

X C A*R Therefore (by Cor. 5, Prop. VI.) the

... 2BCx
centripetal torce is reciprocally as

that is (because 2 B Ca x C Aa
is given) reciprocal-

1

ly as n~7^ > tnat ^ directly as the distance P C.....

Jr \j

Which was to be found.

Cor, I . And therefore, the force is as the distance

of the body from tne centre of the ellipse; and,

on the contrary, if the force is as the distance, the

body will move in an ellipse, whose centre coincides

with the centre of force ; or perhaps in a circle, into

which the ellipse may be changed.

Cor. 2. And the periodical times of the revolutions

made in all ellipses whatsoever about the same centre

will be equal. For those times in similar ellipses are

equal (by Cor. 3. and 8. Prop. IV.) but, in, ellipses
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that have then- greater axis common, they are to each

other, as the whole areas of the ellipses directly, and

the parts of the areas described in the same time in-

versely ; that is, as the less axes directly, and the ve-

locities of the bodies in the principal vertices inverse-

ly ; that is, as those less axes directly, and the ordi-

nates to the same point of the common axis inversely ;

and therefore (because of the equality of the direct

and inverse ratios) in the ratio of equality.



SECTION III.

OF THE MOTION OF BODIES IN ECCENTRIC OR
CONIC STATIONS.

PROPOSITION XL PROBLEM VI.

Let a body revolve in an ellipsis : it is required

tojind the law ofcentripetalforce tending to

thefocus ofthe ellipsis. (Fig. 14.)

LET S be the focus of the ellipsis. Draw S P,

cutting the diameter D K of the ellipsis in E, and the

ordinate Q pin x\ and let the parallelogram Q x P R
be completed. It is evident that E P is equal to

the greater semi-axis A C : for, drawing H I from the

other focus H of the ellipsis, parallel to E C, because

C S, C H are equal, E S, E I will be also equal ; so

that E P is half the sum of P S, P I, that is, (because

of the parallels HI, PR, and the equal angles- 1 P R,

H P Z,) of P S, P H; which taken together are equal

to the whole axis 2 A C. Let Q T be perpen-

dicular to S P, and putting L for the principal lattis
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rectum of the ellipsis (or for ,) "L X Q RA C
will be to L X P v, as Q R to P v > that is, as P E,

or A C to P C ; and L X P v, to 'G v P, as L to

G; and GvP to Q v* as PC* to C D* ; and

(by Cor 2. Lem. VII.) the points Q and P continu-

ally approaching without end, Q c* is to Q x* in the

ratio of equality ; and Q #*, or Q v* t is to Q T* as

E P* to P Fa
; that is, as C A* to P *

; or, (by Co-

nies) as C D a to C B*. And compounding all these

ratios together, L X Q R is to Q T*-, as A C X
L x P C* x CD, or 2 C B* x P Ca x C D, te

PC X Gv X C Da X C B, or as 2 P C to G v.

But, the points Q and P continually approaching

without end, 2 P C and G v are equal. Therefore

the quantities L X Q R and Q T* proportional to

these, are also equal. Let these equals be multiplied

S P 3

into
-

, and L X S Pa will become equal to

QR
S Pz x Q T z

. Therefore (by Cor. 1. and 5. Prop.QR
VI.) the centripetal force is reciprocally as L X S Pz

;

that is, reciprocally in the duplicate ratio of the dis-

tance S P. Which was to be found, -i

PROPOSITION XII. PROBLEM VII.

Let a body move in an hyperbola : it is
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red to find the law ofcentripetalforce tend-

ing to thefocus of iliatjigure. (Fig. 15.)

Let C A, C B be the semi-axes of the hyperbola ;

P G, K D other conjugate diameters ; P F a perpen-

dicular to the diameter K D ; and Q v an ordinate to

the diameter G P. Let S P be drawn cutting the

diameter D K in E, and the ordinate Q v in xt and

Jet the parallelogram QRP.r be completed. It is

evident, that E P is equal to the semi-transverse axis

A C ; for, drawing H I from the other focus H of

the hyperbola, parallel to E C, because C S, C H are

equal, E S, E I will be also equal ; so that E P is

half the difference of P S, PI; that is (because of

the parallels I H, P R, and the equal angles I P R,

H P Z) of P S, P H ; the difference of which is equal

to the whole axis 2 A C. Let Q T be perpendicnlar

to S P. And the principal latus rectum of the hy-

.

2BC*
perbola (that is

-

,) being called L, we shall
A O

have L X Q R to L X P v, as Q R to P v, or P*
to P v, that is (because of the similar triangles Pxv,
P E C), as P E to P C, or A C to P C. Also L X

P v will be to G v X P vt as L to G v ; and (by the

properties of the conic sections) the rectangle G v P
is to Q y*, as P C* to C D* ;

and (by Cor. 2, Lem.

VII.) Qvz to Q .r*, the points Q and P continually

approaching without end, becomes a ratio of equality ;

and Q .r* or Q u* is to Q T*, as E P* to P F* ; that

is, as C A* to P Fa, or (by Conies) as C D* to
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C B* : and, compounding all these ratios together,

L X Q R is to QTa
, as AC X L X PC* X CD%

or 2 CB* X PC* X CD* to PC x Go X CD*
X C Ba

; or as 2 P C to G i>. But the points P and

Q continually approaching without limit, 2 P C and

Gv are equal. Therefore the quantities L X Q R
and QT*, proportional to them, are also equal.

S P*
Let these equals be multiplied into ~^rzrj and L x

QK
SP* x QT*

S P* will be equal to . Therefore,

(by Cor. 1 and 5, Prop. VI.) the centripetal force is

reciprocally as L x S P* ; that is, reciprocally in the

duplicate ratio of the distance S P. Which was to

be found.

PROPOSITION XIII. PROBLEM VIII.

Let a body move in the perimeter of a parabo-

la : it is required to .find the law of centri-

petalforce, tending to iliefocus ofthatjigure.

(Fig. 16.)

Let P be the body in the perimeter ofthe parabola,

and from the place Q, into which the body is moving,

draw Q R parallel, and Q T perpendicular to S P;
as also Q v parallel to the tangent, and meeting both

the diameter P G in v, and the distance S P in x.
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? because of the similar triangles P x v, S P M,
and the equal sides S P, S M of the one, the sides

P X or Q R and P v of the other are also equal. But

(by the properties of the conic sections) the square of

the ordinate Q v is equal to the rectangle under the

latus rectum, and the segment P v of the diameter;

that is, (by Conies) to the rectangle 4 P S X P vt

or 4 P S X Q R ; and, the points P and Q approach-

ing without limit, the ratio of Q v to Q x (by Cor. 2.

Lem. VII.) becomes the ratio of equality. Therefore

Q.r*, in this case, becomes equal to the rectangle

4 PS X QR. But (because of the similar triangles

Q x T, S P N) Qx* is to Q T z
, as P Sa

to S N*
;

that is, (by Conies) as PS to S A ; that is, as

4 P S X Q R to 4 S A X Q R, and .herefore

(by Prop. IX. Lib. V. Elem.) Q Ta
, and 4 S A X

SP*
Q R are equal. Multiply these equals into - -

, and
QR

5 Pa
>c Q Ta-- will become equal to SP* X 4 S A :

QR
and therefore (by Cor 1. and 5. Prop. VL) the cen-

tripetal force IB reciprocally as S P X 4 S A ; that

is, because 4 S A is given, reciprocally in the dupli-

cate ratio of the distance S P. Which was to be

found.

Cor. 1. From the three last propositions it follows,

that if any body P goes from a p'r-ce P, with any

velocity, in the direction of any right line P R, and

at the same time is urged by the action of a centripe-

tal force, which is reciprocally proportional to the
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square of the distance of the places from the centre ;

this body will move in one of the conic sections, hav-

ing its focus in the centre of force ; and the contrary.

For, the focus, the point of contact, and the position

of the tangent being given, a conic section may be

described, which at that point shall have a given cur-

vature. But the curvature is given from the centri-

petal force and the velocity of the body being given,

and two orbits, mutually touching each other, cannot

be described by the same centripetal force, and the

same velocity.

Cor. 2. If the velocity, with which the body goes

from its place P, is such, that in any indefinitely

small moment of time the line P R may be thereby

described ; and the centripetal force is such, as in the

same time to move that body through the space Q R;

the body will move in one of the conic sections;

whose principal latus rectum is the limit, to which

QT a

the quantity
- ~~

approaches, while the lines P R,y K
Q R are continually diminished.

In these corollaries I consider the circle as an el-

lipsis ; and I except the case, where the body descends

to the centre in a right line.

PROPOSITION XIV. THEOREM VI.

If several bodies revolve about one common

centre, and the centripetalforce is recipro-
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cally in the duplicate ratio of the distance of

placesfrom the centre ; I say, that the prin-

cipal latera recta of their orbits are in the

duplicate ratio of the areas, 'which the bodies,

by radii drawn to the centre, describe in the

same time. (Fig. 8.)

For (by Cor. 2, Prop. XIII.) the latus rectum L
QT*

is equal to the limit, to which the quantity y tv

approaches, while the distance of P and Q is conti-

nually diminished. But the small line Q II, in a

given time, is as the generating centripetal force;

that is, (by supposition) reciprocally as S Pa
. There-

QT*
fore is as Q T5 x S P* ; that is, the latus rcc-

Q K
turn L is in the duplicate ratio of the area Q T x
S P. Which was to be demonstrated.

Cor. Hence the whole area of the ellipsis, and the

rectangle under the axes, proportional to it, is in the

ratio compounded of the subduplicate ratio of the

latus rectum, and the ratio of the periodical time. For,

the whole area is as the area Q T X S P, which is

described in a given time, multiplied into the perio-

dical time.

PROPOSITION XV. THEOREM VII.

The same things being supposed, I say, that
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the periodical times in ellipses are in the

sesquiplicate ratio of their greater axes.

For the less axis is a mean proportional between

the greater axis and the latus rectum ; and, therefore,

the rectangle under the axes is in the ratio com-

pounded of the subduplicate ratio of the latus rectum^

and the sesquiplicate ratio of the greater axis. But

this rectangle (by Cor. Prop. XIV.) is in a ratio,

compounded of the subduplicate ratio of the latus

rectum, and the ratio of the periodical time. Sub-

duct from both sides the subduplicate ratio of the

latus rectum, and there will remain the sesquiplicate

ratio of the greater axis equal to the ratio of the pe-

riodical time. Which was to be demonstrated.

Cor. Therefore, the periodical times in ellipses are

the same as in circles, whose diameters are equal to

the greater axes of the ellipses.

PROPOSITION XVI. THEOREM VIII.

The same things being supposed, and right

lines being drawn to the bodies, which touch

the orbits ; and perpendiculars being letfall

on these tangentsfrom the commonfocus : 1

say, that the velocities of the bodies are in a

ratio compounded of the ratio ofthe perpew-



diculars inversely, and the subduplicate ratio

ofthe principal latera recta directly. (Fig.

8.)
'

From the focus S draw S Y perpendicular to the

tangent P R, and the velocity of the body P will be

reciprocally in the subduplicate ratio of the quantity

SY*
~

. For that velocity is as the indefinitely small
L

arc PQ described in a given moment of time; that

is, (by Lem. VII.) as the tangent P R ; that is, be-

cause of the proportionals P R to Q T and S P to

SP X QT
SY, as , or as S Y reciprocally and

S Y
S P X Q T directly ; but S P X Q T is as the area

described in a given time; that is, (by Prop. XIV.)
in the subduplicate ratio of the lalus rectum. Which

was to be demonstrated.

Cor. 1. The principal latera recta are in a ratio

compounded of the duplicate ratio of the perpendi-

culars, and the duplicate ratio of the velocities.

Cor. 2. The velocities of the bodies, in their great-

est and least distances from the common focus, are in

the ratio compounded of the ratio of the distances

inversely, and the subduplicate ratio of the principal

latera recta directly. For the perpendiculars are

now the distances.

Cor. 3. And therefore the velocity in a conic sec-

tion, at its greatest or least distance from the focus,

is to the velocity in a circle at the same distance from



the centre, in the subduplicate ratio of the principal

latus rectum to double that distance.

Cor. 4. The velocities of bodies revolving in ellip-

ses, at their mean distances from the common focus,

are the same as those of bodies revolving in circles, at

the same distances : that is, (by Cor. 6. Prop. IV.)

reciprocally in the subduplicate ratio of the distances.

For the perpendiculars are now the less semi-axes,

and these are as mean proportionals between the dis-

tances and the latera recta. Let this ratio inversely

be compounded with the subduplicate ratio of the

latera recta directly, and we shall have the subdupli-

cate ratio of the distances inversely.

Cor. 5. In the same figure, or even in different

figures, whose principal latera recta are equal, the

velocity of a body is reciprocally as the perpendicular

let fall from the focus on the tangent.

Cor. 6. In a parabola, the velocity is reciprocally

in the subduplicate ratio of the distance of the body
from the focus of the figure : in the ellipsis it is more

varied, and in the hyperbola less than according to

this ratio. For (by Conies) the perpendicular let fall

from the focus on the tangent of a parabola is in the

subduplicate ratio of the distance. In the hyperbola

the perpendicular is less varied ; in the ellipsis mpre.

Cor. 7. In a parabola, the velocity of a body, at

any distance from the focus, is to the velocity of a

body revolving in a circle at the same distance from

the centre, in the subduplicate ratio of the number

"2 to 1 ; in the ellipsis it is less, and in the hyperbola



greater, than according to this ratio. For (by Cor.

2. of this Prop.) the velocity at the vertex of a para-

bola is in this ratio, and (by Cor. 6. of this Prop,

and Prop. IV.) the same proportion is preserved in

all distances. And hence also in a parabola the ve-

locity is every where equal to the velocity of a body

revolving in a circle at half the distance ; in an ellip-

sis it is less ; in an hyperbola greater.

Cor. 8. The velocity of a body, revolving in any

conic section, is to the velocity of a body revolving in

a circle, at the distance of half the principal latus rec-

tum of the section, as that distance, to the perpendi-

cular let fall from the focus on the tangent of the

section. This appears by Cor. 5.

Cor. 9. Since (by Cor. 6. Prop. IV.) the velocity

of a body, revolving in this circle, is to the velocity

of a body, revolving in any other circle, reciprocally

in the subduplicate ratio of the distances ; therefore

ex &quo the velocity of a body, revolving in a conic

section, will be to the velocity of a body revolving in

a circle at the same distance, as a mean proportional

between that common distance, and half the principal

latus rectum of the section, to the perpendicular let

fall from the common focus upon the tangent of the

section.

FINIS.
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GENERAL INTRODUCTION

THREE SECTIONS.

Of the Method of Exhaustions.

Art. 1. Jt$EFORE we enter upon the consideration

of the doctrine of Prime and Ultimate Ratios, it may
be of use to observe the steps by which the ancients

were able, in several instances, from the mensuration
of right-lined figures, to judge of such as are bound-
ed by curve lines -.for as they did not allow themselves

to resolve curvilinear figures into rectilinear elements^
it is worth while to examine by what art they could
make a transition from the one to the other.

2. They found that similar triangles are to each
other in the duplicate ratio of their homologous
sides ; and by resolving similar polygons into similar

triangles, the same proportion was extended to these

polygons also. But when they came to compare cur-

vilinear figures, which cannot be resolved into recti-

linear parts, this method failed. In these instances,"
1

they had recourse to what is called the Method of

Exhaustions; the principle of which consisted, first,

in describing upon the curvilinear space a rectilinear

one, which, though not equal to the other, yet might
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differ less from it than by any assignable quantity ;

and secondly, in investigating the truth or falsehood

of every supposition that could possibly be made

contrary to the proposition to be proved; and by
reducing every such supposition to an absurdity,
thence indirectly inferring the truth of the proposi-
tion itself. For instance, in comparing the areas of

two circles, they inscribed in each similar polygons,
which, by increasing the number of their sides, con-

tinually approached to the areas of the circles, so

that the decreasing differences betwixt each circle

and its inscribed polygon, by still further and further

divisions of the circular arcs, could become less than

any quantity that can be assigned : they found that

all this while the similar polygons observed the same
invariable ratio to each other, viz. that of the squares
of the diameters of the circles. Upon this they
founded their demonstration; and by shewing that

some absurdity must follow if we suppose the circles

to be to each other in a greater or in a less ratio than

the squares of the diameters, they concluded that

they must be in that very ratio. But as one com-

plete instance may serve better than any general de-

scription, to exemplify their reasoning, let the follow-

ing Theorem be proposed to be demonstrated by the

method of Exhaustions.

3. The area of a circle is equal to half the product of

its radius and circumference. (Fig. 17.)

Let b rf, the base of the right /. A a I d, be sup-

posed equal to the circumference of the circle ABO,
ab radius C A, EFGH any equilateral poly-

gon described about the circle, A B D K a similar

polygon inscribed in it. As the circumscribed polygonEFGH is greater than the circle, so it is greater
than the triangle ab d (being = to a A whose altitude

is C A or a 6, and base = perimeter EFGH,
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which is always greater than b d, the circumference of
the 0). The inscribed polygon is less than the ,

and it is also less than the A a b d, (being = to a A
whose altitude = C Q, which is less than C A or a 6,

and base = to its perimeter A B D K, which is less

than the circumference b d) : .'. the and the A
a b d are both constantly limits betwixt the external

and internal polygons E F G H, A B D K.
|]
Let the

arc A B be bisected in L, and the tangent at L meet
A E, B E in M and N, and the Z ELM being a

right Z , EM must be greater than L M or M A,
the A ELM greater than A L M, and E M N
greater than the sum of the A * A L M, B L N, and

consequently greater than half the space E A L B,
bounded by the tangents E A, E B, and the arc

ALB; .'. (by Euclid 1. 10 B, the foundation of this

method) the circumscribed polygon may approach to

the nearer than by any assignable quantity.' The
inscribed polygon may also approach to the nearer

than by any assignable quantity, as is shewn in the

Elements of Euclid, .". the and the A a b d, which
are both limits betwixt these polygons, must be equal
to each other. For if the A a b d be not = to the

circle, it must either be greater or less than it. If the

A a b d be greater than the 0, then since the external

polygon, by encreasing the number of its sides, may
be made to approach the so as to exceed it by a

quantity less than any difference that can be supposed
to exist between it and the A ab d, it follows that the

external polygon may become less than that A,
which is absurd. If the A a b d be less than the ,

then the inscribed polygon, by being made to ap-

proach the , may exceed that A, which is al&o

absurd : Hence the circle and A are equal to each
other.

4. Archimedes in this demonstration does not sup-

pose the circle to coincide with a circumscribed equila-
teral polygon of an infinite number of sides, but pro-
ceeds in a more accurate and unexceptionable manner.

C
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And in this consists the error of many winters, who
have asserted that curve lines were considered by the

ancient geometers as polygons of an infinite number
of sides. But this principle no where appears in

their writings; we never find them resolving any
figure or solid into infinitely small elements : on the

contrary, they seem to avoid such suppositions, even
when their demonstrations might have been some-
times abridged by admitting them. For instance, if

they could have allowed themselves to have consider-

ed circles as similar polygons of an infinite number
of sides; after proving that any similar polygons in-

scribed in circles are in the duplicate ratio of their

diameters, they would have immediately extended
this to the circles themselves. But there is ground
to think, that they would not have admitted a demon-
stration of this kind. It was a fundamental principle
with them, on which, as Archimedes expressly asserts,

they founded their propositions on curvilinear figures,
that the difference of any two unequal quantities may
be added to itself until it exceed any proposed finite

quantity of the snme kind. But this principle seems

to be inconsistent with the admitting of an infinitely
small quantity or difference, which added to itself

any number of times, is never supposed to become

equal to any finite quantity whatsoever. The an-

cients, therefore, considered curvilinear areas as the

limits of circumscribed or inscribed figures of a more

simple kind, which approach to these limits, (by a

bisection of lines or angles, that is continued at plea-

sure) so that the difference betwixt them may become
less than any given quantity. The inscribed or cir-

cumscribed figures were always conceived to be of a

magnitude, and N. that is assignable; and from what

had been shewn of these figures, they demonstrated

the mensuration or the proportions of the curvilinear

limits themselves, by arguments ab alsurdo.
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Ofthe Method of Indivisibles.

5. The doctrine of Exhaustions, as delivered by
Archimedes, being considered tedious and prolix by
the modern geometers, various methods were propo-
sed for the purpose of simplifying and abridging his

demonstrations. It was thought unnecessary to con-

ceive the figures circumscribed about, or inscribed in,

the curvilinear area or solid, as being always assign-
able and finite ; and, therefore, instead of Archi-

medes' assignable finite figures, indivisible or infinite-

ly small elements were substituted, and these being

imagined indefinite or infinite in N., their sum was

supposed to coincide with the curvilinear area or

solid.

6. It was upon these principles that Cavalerius, in

the 17th century, founded what is called the Method
of Indivisibles. In this doctrine, lines were conceiv-

ed to be made up of an indefinite N. of points, su-

perficies of lines, and solids of superficies ; and in

computing the magnitudes or proportions of areas or

solids, they computed the sum of all the indivisible

elements of which the area or solid is composed.
Thus for example, a A was conceived to be made up
of an indefinite N. of lines parallel to the base, and

consequently the area of the A was equal to the sum
of all these parallel lines. Now to find the sum of

these parallel lines, we have only to conceive them as

a set of quantities in arithmetical progression the

1st term being 0, and the last term the base of the

A, and the N. of terms the perpendicular ;
.*. the

sum of the series, or the area of the A, will = base

X ^ the perpendicular.



7. Ex. 2. To find, the ratio betwixt the sphere and

its circumscribing cylinder by the method of Indivi-

sibles. {Fig. 18.)

Let the cylinder N M, the cone NOR, and the

hemisphere M T S be cut by planes parallel to the

base, one of which is C S K D C ; then S O* = C D*
= S D* + D O3 = S& + D K1

,
.'. C D* = 8 IP

+ D Kz
; and this is true for every section parallel

to the base : .'. since the circles of which these line

are the diameters are as the squares of the said

diameters, it follows that the sum of all the circles in

the sphere, together with the sum of all the circles in

the cone = the sum of all the circles in the cylinder :

the cylinder itself .*. which is composed of these cir-

cles is = to the sphere and cone together ; but the

cone is a third part of the cylinder ; this therefore

being deducted, there remains A
sphere : cylinder

: : 2 : 3.

8. In this doctrine then we see, that by the admis-

sion of infinitely small quantities, the old foundation

of geometry was abandoned, and suppositions resort-

ed to which had been avoided by Archimedes. And
though the new geometry had much the advantage
over the ancient in point of conciseness ; yet the for-

mer was much inferior to the other in the certainty
of its deductions. For as this doctrine was inconsis-

tent with the strict principles of geometry, so it soon

appeared that there was some danger of its leading to

false conclusions. And after men had indulged them-

selves in admitting quantities that were not assign-

able, and in supposing such things to be done as

could not possibly be effected (against the constant

practice of the ancients), and had involved themselves

in the mazes of infinity, it was not easy for them to

avoid perplexity, and sometimes error.

9. To shew the caution which should be used in

the application of this doctrine, the following exam-

ple may be sufficient. If a be considered as a
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polygon of an Infinite number of sides, and .*. an in-

finitely small arc be supposed perfectly to coincide

with its chord, it follows that the time of the vibra-

tion of a pendulum in this arc = the time of descent

down its chord ; but, by mechanics, the ratio of the

times is that of the quadrant of a to its diameter.

Nor can this difficulty be removed except the arc be

again divided into an infinite number of indivisible

elements, infinitely less than the former
;

i. e. we must
have recourse to infinitesimals of the 2d order.*

Of the Doctrine ofPrime and Ultimate Ratios.

ART. 10. Having taken a general view of the an-

cient geometry, as it existed in the time of Archi-

medes, and the changes effected in it by the modern

mathematicians, previous to Newton's time ; we may
now proceed to the consideration of the doctrine of

Prime and Ultimate Ratios, which was invented by
Sir I. Newton, for the purpose, as he himself says, of

avoiding, on the one hand, the tedious demonstra-
tions of the ancient, and on the other, the inaccurate

and objectionable positions of the modern geometers.

* There is no such difficulty when the method of prime and
ultimate ratios is applied to this case } for, though the arc and
chord approximate to equality, the times of descending along
them do not approximate ; for, by the doctrine of limits, no

Eart

of a curve, how small soever, can ever be taken for a right
ne : but even when they so far approach to each other, that

their lengths may be taken as equal, the curve still remains a

curve ; its inclination is different from that of the chord ;
the

accelerating force along the curve perpetually varies, while the

accelerating force along the chord remains constant, and con-

sequently the times of describing these spaces are unequal, even

supposing their lengths the same.
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In this doctrine, magnitudes arc not supposed to con-

sist of indivisible parts, but to be generated by con-

tinued motion. Lineae nempe (as Newton says)

describuntur, ac describendo generantur, non per ap-

positionem partium, sed per moturn continuum punc-
torum ; superficies per motum Hnearum, solida per
motum superficierum, anguli per rotationem laterum,

tempora per fluxum continuum, & sic in caeteris.

Hae geneses in rerum natura locum vere habcnt, &
in niotu corporum quotidie cernuntur. This me-
thod of conceiving all variable quantities to be gene-
rated by motion is the characteristic feature, which

distinguishes both this doctrine, and also that of flux-

ions.

11. This being premised, we now go on to the

doctrine itself, the principle of which is contained in

the foUowing definition : Let there be two quan-
tities, one fixed, and the other varying, so related to

each other that (1) The varying quantity, by a per-

petual augmentation or diminution, continually ap-

proaches to the fixed quantity. (2) That the vary-

ing quantity does never pass beyond, or even actually
reach that which is fixed. (3) That the varying

quantity approaches nearer to the fixed quantity than

by any assignable difference ; then, upon the fulfil-

ment of these three conditions, the fixed quantity is

x called the Limit or Ultimate Magnitude of the vary-

ing quantity.
12. Ex. Take the series 1, i, |, -|, TV &c. the

sum of which may be considered as continually vary-

ing, being perpetually increased by the accession of

a new term; I say that the N. 2 is the limit of the

varying sum of ihe terms of this series. For (1) the

varying sum continually approaches to the N 2 ; the

difference between the sum of one, two, three, four,

&c. terms, and the N. 2 being the Nos
. 1, , , -, &c.

successively adinfinitum. (2) The sum can never ex-

ceed, or even become equal to 2 ; for no term in this

series of differences can ever become either nothing

-
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or negative. (3) We may continue the series till its

sum approaches nearer to 2, than by any difference

that can be assigned, as appears from the terms of
the series of differences, which may be continued till

they become less than any assignable quantity. The
N. 2 then, having the conditions laid down in Art.

11, is the limit of the sum of the infinite series.

13. The explanation given in Art. 11., of quan- V
tities which have limits, is also to be extended to the

limits of ratios. The definition maybe thus stated.

If there be two quantities that are (one or both) con-

tinually varying, either by being continually aug-
mented, or continually diminished

;
and if the ratio

they bear to each other does, by this means, perpe-

tually vary, but in such a manner, that (1) this vary-

ing ratio continually approaches to some determined

ratio; (2) that the varying ratio does never pass be-

yond, or even actually reach, the fixed ratio; (3) that

the varying ratio approaches nearer to the fixed ratio

than to any other that can be assigned : then, upon
the fulfilment of these three conditions, the deter-

mined ratio is called the limiting or ultimate ratio of s*

the varying one.

14-. Ex. Take the ratio 3.r + 4:2.r + l, where
both terms are variable, by the variation of x ; then

if x decrease in infinitum, I say that the determined
R. 4 : 1 is the limiting R. of the variable propor-
tion 3x + 4t:2x+l. For (1) as .r decreases,
the quantities 3 x and 2 x decrease, and consequently
the R. 3 # + 4 : 1 x + \ approaches to that of 4- :

1 : (2) The R. 3 x + 4 : 2 x *f- 1 can never ex-

ceed, or even reach, that^of 4:1; for S x + 4 : 2
x + 1 :: 4 : 1, but 8 x + 4 is always greater than

8 .r + 4 ;
.*. 3 # + 4 : 2 # + lis always in a less

R. than that of 4 : 1 ; (3) The Ratio 3 x -f- 4 : 2

x + 1 will approach nearer to that of 4 : 1 than to

any other that can be proposed ;
for in the terms of

this R. 3 x + 4 : 2 x + 1, the varying parts 3 x
and 2 x, by diminishing x> may become less than any



assignable quantity; .'., by Art. 13, the R. 4 : 1 is

the limiting R. of 3 x + 4 : 2 x -f- 1.

15. In the last Ex. we may observe that, though
x is supposed to decrease in infinitum, yet the terms

of the R . no less than the R. itself, always continue

finite. But this is not a necessary condition; fora
R. may never vary beyond certain limits, even though
the terms themselves should increase or decrease in

infiuitum ; and since Ratios of this sort are of most

frequent recurrence in this doctrine, and peculiarly
characteristic of it, we will now proceed to the consi-

deration of them.

16. Ex. 1. Let x be any varying quantity ; make
4, or1 + 3 x = A, and 2 x* + x = B, then will A
and B also be varying quantities, as depending upon
x ; when x vanishes, A and B will both vanish ; and
when x is infinite, they will both be infinite : I say,

that the determined R. 3 : 1 is the limiting R. of

A : B, while x decreases in infinitum. For the R.
A : B = the R. 4 x + 3 : 2 x + I

;
/. (1) as a-

decreases, A : B approaches to the R. 3:1; (2)
the R. A : B can never exceed, or even reach, that

of 3 : 1
; for 6 x* + 3 x : 2 x3 + x : I 3 : 1, but 6 xz

-f 3 x is greater than 4 x* + $ x\ .*. 4 x* + 3 x is

always in a less R. to 2 a* -f- x than the R. 3 : 1 ;

(3) the Ratio A : B will approach nearer to that of

3:1, than to any other that can be proposed ; for

4 x and 2 x may become less than any assignable

quantity, by the diminution ofjr; consequently the

R .3 : 1 is the limiting R. of 4 x* + 3 x : 2 x*

+ x.

Ex. 2. Taking the same R. as before; I say,
that while x increases in infinitum, the determined

R. 2 : 1 is the limiting R. of A : B ;
for the given

11. = that of 4- + : 2 + JL
;

/. (1) the Ratio
x x

A : B approaches that of 2 : 1
; for as x increases

JL and decrease ; (2) The R. A : B can never be
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less than, or even equal to, the R. 2 : 1 ; for 4- a*

-f 2 x : 2 OT* + x '. I 2 : 1
;
/. 4 ** -f- 3 * is always

to 2 a?* + .r in a greater R. than that of 2 : 1 ;

(3) The R. A : B will approach nearer to that of
2 : 1 than to any other that can be proposed ; for

3 1
and ._, by increasing x, may become less than

a x

any assignable quantity ; consequently the R. 2 : 1

is the limiting R. of 4 ** + 3 x : 2 a* + x.

17. We see then in the two last Examples, that

though diminishing x, and consequently diminishing
the terms A and B, increases their R. ; and con-
trariwise increasing these terms, by increasing xt d*e-

creases their R. ; yet there is a limit both to the in-

crease and decrease of this R., though there is none
to the4cnns themselves that compose it, which, as we
'have seen, in the first case decrease, and in the other

increase, in infinitum.

18. We will close these Examples, by proposing a

geometrical one ofthesame kind with that given in Art.

16, which is added for the purpose of more clearly

explaining Newton's phrases of " Ratio ultima quan-
titatum evanescentium," and " Ratio prima Quantitn-
tum nascentium." Let (Fig. 19,/ABCD, EBCF
be two quadrilateral figures, and let D F be parallel
to A E ; then the quadrilateral A B C D bears to

the quadrilateral EBCF the proportion of A B -f-

D C to E B + C F. Now if the line D F be sup-

posed to advance towards A E, with an uninterrupted

motion, till the quadrilaterals quite disappear or va-

nish, this proportion ofAB + DC: BE + CF
will, during this motion, continually vary, (unless the

lines DA, C B, F E produced meet in the same

point, which they are not here supposed to do)
and this proportion, by diminishing the distance be-

tween D F and A E may at last be brought nearer to

the proportion of A B : BE than to any other what-

ever ; though it can never exceed, or even actually

H
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reach, this-proportion ; .*. the proportion of A B :

B E is the limiting or ultimate proportion of the

quadrilateral A B C D : the quadrilateral E B C F,
bcause it is the proportion which these quadrilaterals
can never actually have to each other, but the limit

of that proportion.
In this Ex. then, as in the other above given, the

quantities themselves, i. c. the quadrilaterals, have
neither of them any final magnitude, or even so much
as a limit

; but, by the diminution of the distance be-

tween D F and A E, diminish continually without

end; yet there is a limit to the varying proportion

existing between them, viz. that of A B : B E ; and
hence this limit is to be called the ultimate R. of

the vanishing quadrilaterals.
1 9. But that the meaning of the expression

" Ra-
tio ultima quantitatum evanescentium" may -be still

more clearly understood, we may further observe (1)>

That since the quadrilaterals diminish by a continual

motion till they actually vanish, they may properly
be called vanishing quantities ; since under this view

they have never any stable magnitude, but decrease

by a continued motion till they become nothing.

(2) That the quadrilaterals A B C D, B E F C, be-

come vanishing quantities, from the time we first

ascribe to them this perpetual diminution, ;. r. from
that time they are quantities going to vanish. And
as during their diminution they have continually dif-

ferent proportions to each other ; so the R. between

A B and B E is not to be called merely Ratio harura

quantitatum evanescentium ; but ultima Ratio, &c.

and the same observations are applicable to the Ex-

ample given in Art. 16.

20. Should we suppose the line D F first to coin-

cide with the line A E, and then to recede from it,

thus giving birth to the quadrilaterals ; then under

this conception, the R. A B : B E, as it was before

called the R. wherewith the quadrilaterals vanish, is

now to be considered as the R. wherewith the qu-



59

drilaterals by this motion commence ; and the R. may
also properly be called thejirst or prime R. of these

quadrilaterals at their origin.
21. As in Art. 19, the phrase vanishing quantities

was applied to the quadrilaterals, from the time that

they are quantities going to vanish; so, under the pre-
sent conception, they are to be called nascentes, not

only at the very instant of their first production, but

according to the sense in which such participles are

used in common speech ; just as when we say of a

body, which has lain at rest, that it is beginning to

move, though it may have been some little time in

motion. On this account we must not use the simple

expression, Ratio quantitatum nascentium, but Ratio

prima quantitatum nascentium.

22. We see here the same R. may be called

sometimes the Prime, at other times, the Ultimate,

R. of the same varying quantities, according as these

quantities are considered under the notion of vanish-

ing, or of being produced, before the imagination,

by an uninterrupted motion. The doctrine under

examination receives its name from both these ways
of expression.

23. There are two objections to this method propo-
sed and answered by Newton in his Scholium to the 1st

Section, which it may be worth while briefly to notice ;

though they may have been sufficiently obviated, the

first in Art. 18, and the second in Articles 19 and 21.

The first objection states, that there is no ultimate

proportion of vanishing quantities* forasmuch as before

they vanish, the proportion is not the ultimate pro-

portion ; and when they have vanished, it is nothing.
But Newton observes, that it might with equal justice
be contended that there is no ultimate velocity of a

body falling by gravity to the earth's surface, inas-

much as before it has reached the earth, the velocity
is not the ultimate velocity ; and after it has reached

the earth, it is nothing. The answer in both cases

is easy, when the meaning of the term 'ultimate if
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carefully kept in view. By the ultimate velocity then
is to be understood that, with which the body moves,
neither before it arrives at the earth, nor after ; but
that very velocity with which it arrives : so by the

ultimate R. of vanishing quantities is meant the R.
of the quantities, not before they vanish, nor after ;

but that with which they do vanish. In like manner,

by the prime R. quantitatum nascentium, is meant the

R. with which they start into existence : there exists

a limit to the velocity in the one case, and to the

varying R. in the other ; and this limit, as has been

frequently observed, is all that is meant by the term
ultimate proportion.

In the second objection it is contended, that if the

ultimate Ratios of vanishing quantities be given, the

ultimate or vanishing quantities themselves will be

given; z. e. the quantities themselves will have at-

tained a limit to their decrease, which they cannot

pass; and thus every quantity will consist of indivisi-

ble parts. If by the term ultima ratio quantitatum
evanescentium were meant the ratio of ultimate quan-
tities, the objection might have some weight ; for then

it might be inferred from the expression, that these

ultimate quantities had attained some final magni-
tude; but Newton never supposes this: on the con-

trary, by ultimate or evanescent quantities he means

quantities, to the_decrease of which there is no limit ;

and consequently, by the ultimate ratios qupntitatum
evanescentium, is to be understood, not the Ratios of

ultimate magnitudes, but, as we have seen, the limit

of the Ratios of quantities decreasing without end ;

to which limits the varying Ratios may approach
nearer than to any other that can be assigned, but

which they can never pass, nor even equal, till the

quantities are diminished in infinitum : just as when
two quantities, whose difference is given, increase in

infinitum, their ultimate R. is given, viz. a R. of

equality ; and yet the ultimate quantities themselves

are not given, because they can never reach their ul-
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timate or maximum state. Newton therefore cautions

his readers, if at any time he should use the words
"

quantitates quam minima?, vel evanescentes, vel

ultimse," not to understand quantities determined in

magnitude (how small soever), but quantities, to the

decrease of which there is no limit. And herein the

method of Prime and Ultimate Ratios essentially dif-

fers from that of indivisibles ; for in that method these

ultimate quantities are considered absolutely as parts,

whereof their respective quantities are actually com-

posed. But though these ultimate quantities have no
final magnitude, which would be necessary to make
them parts capable of compounding a whole by ac-

cumulation, yet their ultimate Ratios are as truly as-

ignable as the Ratios between any quantities what-

ever. Therefore none of the objections made against
the doctrine of Indivisibles, are of the least weight

against this method.



NOTES TO SECTION I.

LEMMA I.

24-. Case 1: Let there be two variable quantities
x and y, which continually approach to equality, so

that their difference, when compared with either of

them, becomes at length less than any assignable

quantity ; then will x and y be ultimately equal : in

other words, if a be the ultimate magnitude of xt

and b the ultimate magnitude of y, these limits a
and b will be accurately equal. For if not, let these

limits have a difference, d, i. e. let b = a + d ; then

since a is the limit of xt x can never exceed a,

and .*. can never come nearer to a + d, the limit of

y, than by the given difference d; i. e. x and y,
even in their ultimate state, can never approach near-

er to each other than by the given difference </;

which is contrary to the hypothesis : .*. a does ac-

curately = b, i. e. x and y are ultimately equal.
Here x has been supposed to be less than its limit

a i but the Prop, may be proved after the same

manner, if* be supposed to be greater than a.

Case 2. Let there be two variable Ratios x : y and

<o : 2, which continually approach to equality ; so that

at length the R. x : y approaches nearer to that of

v : z than to any other that can be assigned ; then
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will the R. x : y be ultimately = the R. v : z
,< m

. other words, if m : n be the limiting R. of x : yt

and p : q the limiting R. of v : z, the R. m : n
shall accurately = that p : q. For if not, let there be

any given difference between them ; then, since the

Ratios x : y and v : z can never actually reach their

limits m : n and p : q ; it follows that x : y and v : z

can never approach nearer to equality than by this

given difference, which is contrary to the hypothesis;
.*. the R. m : n does accurately = that of p : q f

i. e. the Ratios x : y and v : z are ultimately equal.
Or both cases may be concisely proved, by observ-

ing, that both quantities, and the Ratios of quantities,
such as are understood in the Lemma, cannot ap-

proach nearer to each other than their limits do ; and
the absurdity of supposing these limits unequal is im-

mediately apparent.

LEMMA III.

Note to Lemma 3.

25. What is here proved of the areas of the in-

scribed and circumscribed figures is not true of the

perimeters ; for the Z.
r

boundary ofthe circumscribed

always remains the same, being = A a + A E, what-

ever be the N. of divisions ; and .*. never approaches
the curvilinear boundary as a limit; and the Z.

r

boundary of the inscribed approaches that of the cir-

cumscribed as a limit, and is always greater than the

curvilinear boundary. Hence Newton's ultimate sum
in Cor. 1. must be strictly confined to area.
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Lent. 5. Cor. 5.

26. For (Fig. 20) one of the lines at least in each

pair al,lb, b ;, me, en, nd, must cut the curve,

consequently one of the fines at least in each pair

must make a greater 4L with the curve than the tan-

gents do; hence the A S
. apb, b o c, c r d, form-

ed by the tangents, will fall within the mixtilinear

spaces a I , b m c, en d, and .". be less than them ;

consequently since Aa Ib mend is ultimately = the

curvilinear area, much more will the area Aapbocrd
be ultimately = the same curvilinear area.

Notes to Lew. 5. Cor. 4.

27. The ultimate Jigures here spoken of, must be

applied only to the figures of the chords and tangents,

since the Z r
perimeters above mentioned, have not the

curve line for their limit. The Cor. so far as relates

to the chords, is perfectly evident ; if the reader

should not think it equally so for the figure formed

by the tangents, he may see a proof of it in Art. 37.

28. Curvilinear limits of rectilinear Jigures. See

Scholium to Lemma XL where Newton again cau-

tions his readers,* that if at any time he should, for

right lines, substitute curve lineolse, they are not to

understand that these lineolae are made up of right

lines, however small, (agreeably to the doctrine of

Indivisibles) but that the curves are the limits, to

which the vanishing right lines continually approach,

and ultimately equal.

* " Si pro rcctis usurpavero lineolas curvas, nolim indivisi-

itlio <iai\ pvjinpsrpntifi Hivisihilia."
bilia, sed evanescentia divisibilia-



LEMMA IV.

29. For, by hypothesis, A' : a' \ \ B' : V \ \ C' : d
ultimately ;

.*. A' : a' \ \ A' + B' + C' : a' + I/ + </

ultimately; but ultimately A' + B' -f C' = whole

figure D E F, and a' + V -f- d = whole figure defj
.". under the conditions mentioned in the Lemma,
D E F : d ef'm the given R. of A? : a'.

LEMMA V.

Introductory Articles to Lemma 5.

30. Definition. Curvilinear figures are said to be

similar, when they may be supposed to be placed in

such a manner, that any right line being drawn from
a determined point to the terms that bound them,
the parts of the right line, intercepted betwixt that

point and those terms, are always in one constant R.
to each other. Thus the curvilinear figures A S D,
a S d, (Fig. 21) or the figures S P D, Sj5 d are simi-

lar, when any line S P being drawn always from the

same point S, meeting the two curves in P, p, the

R. of S P : Sp is- invariable.

31. It follows, from this definition, that if there

be two similar curvilinear figures, and any rectilinear

figure be inscribed in one, a similar rectilinear figure

may be inscribed in the other. For let A S D, a s d

(Fig. 22) be two similar curvilinear figures, and let

any rectilinear figure whatever, S A P Q D, be in-

scribed in one of them, S^A D ; I say, that a similar

rectilinear figure may be inscribed in the other sad:
from s draw sp, s q, &c. making the ^ s

a sp, p s g,

&c. = the Z s A S P, P S Q, &c. ; and consequently
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the remaining Z qsdw\\\ the remaining Z QSD,
join a p, pq, q d> &c.; then since S A : sa '.'. S P :

5p (by definition) .'. SA : SP '.' sa : sp, and Z
ASP = Z asp; .'. A S A S P, asp are similar,

and the same may be shewn of all the remaining
A S

;
.*. the polygon sapq d is similar to the polygon

S A P Q D.
32. And hence it is, that this last property has

been frequently made the criterion of similar curvi-

linear figures ; /. e. curvilinear figures have been de-

fined to be similar, when, any rectilinear figure being
inscribed in one, a similar rectilinear figure may be

inscribed in the other
;
which being the case, the de-

finition above given must be proved, to follow as a

consequence from the latter, thus :

Let S A D, sa d be two similar curvilinear figures;
in S A D inscribe any polygon whatever S A P Q D ;

then, since the figures are similar, a similar polygon

may, by the definition, be inscribed in the other

sad', let s ap q d be this polygon ; consequently these

polygons may (by Euclid) be divided into the sanv

N. of similar A S
: let them be so divided ; then since

the A S S A P, sap are similar, as also the A S SPQ,
spgt and S Q D, sq d; S A : 8 P '. '. s a : sp ; S P :

SQ'.'.sp: sq; and SQ: SV.'.sg: sd; /. S A:
s a '. I S P : s p '. '. S Q : s

<?,
&c. ;

i. c. these lines S A,

sa; SP, sp, &c. are to each other in a constant

Ratio.

Hence either of the above properties may be as-

sumed as the definition of similar curvilinear figures,

since they are each mutually deducible from, and

consistent* with, the other. The last definition may
be as convenient in the following Lemma ; but in the

remaining ones the first may be used with advantage.

Lemma 5.

33. (1) Let S A D, sa d (last Fig.) be two similar

curvilinear figures, and let S A P Q D be any polygon
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inscribed in the former, and sapqda, similar polygon
inscribed in the latter (Art. 82) ; then since the poly-
gons are similar AP: PQ'.lap : pq; and P Q :

QD :: P q : qd; :. AP : ap :: PQ : Pq :: Q D
: q d, &c., and this is true when the N. of the sides
A P, ap, P Q, p q, &c. is increased, and their mag-
nitude diminished without limit; .'. (by Cor. Lem.
IV.) curve A P D : curve ap d i: A P : ap : : S A
: s a.

(2) Taking the same construction as before, since

polygons S A P QD, s ap q d are similar, the A b
into

which they are divided will be similar ;
.*. A S A P

: A sap :: A SPQ : A spq :: A SQD : A
$qd,&c. ;

.*. as before, curvilinear area SAD :

curvilinear area sad :: A SAP: A sap :: S A2

LEMMA VI.

Introductory Articles to Lemma 6.

34?. A curve of continued curvature may be defined

to be a line traced out by a point, continually changing
its direction ; where we may observe that the word

continually implies that the change of direction of the

generating point must not be effected by starts or

impulses (per salhim), but by an uninterrupted and

equable motion. Thus the Z B C D, (Fig. 23}
which measures the variation ofdirection of the gene-

rating point at A and B, (while the point moves from

B to A) must, before it become nothing, pass through
all the intermediate degrees of magnitude, fromBCD
to nothing.
From this definition it will appear that two curves

which cut one another, as E </, d F, (fig' -^
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cannot be called a curve of continued curvature at

the point d
,-

for if a and c be taken on opposite
sides olV, the variation of direction from a to c, viz.

the Z cbg has been effected per sal/urn , i.e. in

passing from nothing to cbg, the Z has not passed

through all the intermediate degrees of magnitude.
35. From hence also it follows, (1) That if the

distance betwixt two positions of the generating point

continually decrease, and at length ultimately vanish,
the change of direction of this point will also con-

tinually decrease, and at length ultimately vanish ;

i. c. while B moves up to A (Fig, 23) the Z B C D
is decreasing continually without limit, till at last,

when A B ultimately vanishes, the Z B C D also

ultimately vanishes. (2) That the direction of the

generating point is a tangent to the curve; for, sup-

pose A D to be the direction of the generating point
at A, then, if it did not change its direction, it would
move along the line AD; but, by the definition, it

is continually changing its direction ;
.*. if it be in

the line A D at A, it will not continue in it, but will,

in the next moment of time, go either above or be-

low it ;
.*. A D is a tangent to the curve at A. (3)

That A D is the only tangent ; for, if possible, let

A V, (Fig. 25) making a finite Z with AD, be a

tangent, let the point B move up to A, so that the

change of direction BCD may bo indefinitely small,

then will B C D be indefinitely less than D A V
;

.".

a fortiori will the interior Z, formed by the curve

and tangent D A, be indefinitely less than DAVj
i. e. D A passes indefinitely nearer the curve than

any other line A V that can be drawn.

Lemma 6.

36. After what has been premised, the Lemma
may be easily proved thus. Let A, B (Fig. 25) be two

positions of the generating point, draw the chord

A B, and at the points A, B, draw A C, B C in the
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direction of the generating points at A and B respec-

tively ; then AC, B C are tangents to the curve,

(Art. 35.) Now, by the continual approach of B to

A, the change of direction of the generating point
will continually decrease, and at length ultimately
vanish, (Art. 35) i. e. the Z B C D will ultimately
vanish; ti fortiori .'. will the interior Z. BAD,
contained by the chord and tangent, ultimately
vanish.

Note to Lemma 6.

37. By the help of this Proposition, Cor. 4. Lem.
III. may be easily proved. Let the two lines A D,
D B, (Fig. 26) which touch the curve A C B of con-

tinued curvature in the points A, B meet each other

in D, and the chord A B be drawn ; the sum of the

tangents will be greater than the chord ; and if the

chord be divided into any two parts in the point C,
and the chords AC, C B be drawn, and also E F a

tangent to the curve in the point C, meeting the tan-

gents AD, B D in E and F, the sum of the chords

AC, C B will be greater than the first chord A B ;

and the sum of the tangents A E, EC, C F, F B,

greater than the sum of the chords : but A E, E F
being less than AD, D F; A E, E F, F B will be
less than A D, D B. Hence, if the N. of parts, into

which the curve A C B is divided, be continually in-

creased, the sum of the chords will be continually

increased, and the sum of the tangents continually
diminished ; and the latter sum being always greater
than the former, the difference between them will

continually decrease; and as the Z s between the

chords and tangents way be diminished mithout limit,

(Art. 36) this difference may be also diminished with-

out limit. Hence the difference between the perimeters
of the figures, contained by the two lines A a, A E,

(Fig. I) and the chords, and by the same two lines

and the tangents, will be continually diminished, as

the bases A B, B C, C D, &c. are diminished ; and
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the perimeter of the curvilinear figure will be a limit

to them both.

LEMMA VII.

Introductory Article to Lemma 7.

38. It follows from the definition of similar curvi-

linear figures given in Art. 30, (1) that to draw a

curve Ac b similar to another A C B (fig. 27), we
must produce A B to any point b, and, while A b re-

volves round A as a centre, let the point b move in

the line A 6, so that A b may be to A B in a given
R. ; then will A c b be similar lo A C B : (2) that if

A D be a tangent to A C B at A, it will also be a

tangent to the similar curve A c b at A ; for draw b d

parallel to B D, then by similar A S
, b d : BD '.'.

A b : A B, in a given R. ;
.'. b d will not vanish till

B D vanishes, i. e. at the point A.

Lemma 1.

36. Produce A D (Fig. 27) to any distant point

d, and let d b be drawn parallel to D B, meeting the

chord A B produced in b ; and through the point b

describe, as has been above shewn, the curve A c b

continually similar to A C B, to which A d will be a

tangent; then, by similar A S
, AB : A D '.'. A b : Ad;

and by similar figures (I.em. 5.) ACB: Acb'.l
A B : A 6, or as A D: A d; .'. the chord, arc, and

tangent A B, A C B, and A D are always propor-
tional to the chord, arc, and tangent A b, Acb, and
A d. But when B moves up to A, the 2. b A d

(
=r

Z B A D) will, by Lem. 6, ultimately vanish ;
.*.

A b, and also the intermediate arc A c b, will conti-

nually approach A c/, and at length will ultimately
coincide with, and become equal to it ; and conse-
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quently A B, A C B, and A D, which are always
proportional to these, will also ultimately be to each
other in a R. of equality.

Notes to Lemma 7.

40. In the demonstration B D is supposed to move
parallel to itself, as B moves up to A, while bd re-

mains fixed. Hence (1) by the motion of B towards

A, A b is continually approaching nearer to A d with-

out limit ; while, at the same time, it carries the in-

termediate arc A c b (which is continually unbending
itself) along with it. (2) The magnitudes of A 5 and
A c b also continually approach to that of A d, nearer
and nearer without limit; though these quantities can
never exceed A d, nor indeed equal it, till B and A
actually coincide; .*. \hefoiite lines A 5, Ac 5, and
A d ultimately coinciding are equal ; whence this is

also inferred of the vanishing lines A B, A C B, and
A D, which are always proportional to them.

41. The Lemma is frequently explained by sup-

posing R B D (Fig. 3) to move round R fixed as a

centre, while, by this revolution, B continually ap-

proaches to A ; at the same time d r moves round
the fixed point d in a contrary direction, so as always
to keep parallel to R B D. But this explanation is

clearly at variance with Newton's notions, as is evi-

dent from the next Lemma. See Art. 44.

42. Since it would be difficult for the understand-

ing, in contemplating quantities, which elude the

notice of the senses, clearly to perceive the changes
which take place in the vanishing chord, arc, and

tangent, and the limit to which their proportions

continually approach, Newton has had recourse to

the artifice of substituting, in the room of these van-

ishing quantities, jinite ones, which bear a constant

proportion to the others; and by ascertaining the

limit which the R. between the latter ultimately at-

tains, on the coincidence of B and A, he discovers

also the limit of the Ratios of the vanishing quanti-
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tics, which are proportional to them. The same ob-

servation is applicable to the 8th and 9th Lemmas.

LEMMA VITL

43. Produce A D to any distant point d, and draw
d b r parallel to D B R, meeting A B and A R pro-
duced in b and r ; and through b describe the curve

A c b always similar to A C B ; then the figures
R A B, R A C B, and RAD are always similar to

rAb, rAcb, and r A d; they are likewise always

proportional to them. For R A B : r A b '.'. R A* :

rA :: RADtrArf; /. R A B : RAD::rA6:
r A d; also sector R A C B : sector r A c b '. '. R A* :

r Aa
(Lemma IV.) ::RAD : rAd; .'.RACE:

R A D II ; A c b : r A d. Now let B move up to A,
and ultimately coincide with it, then the /. d A b

(= Z. DAB) will ultimately vanish; .". the three

continually finite A s
r A b, rAcb, and rAd will

ultimately coincide with each other, and consequent-

ly be, ultimately similar and equal to each other : .".

also the vanishing A 9 R A B, R A C B, and RAD,
which are always similar and equal to the former,
will also be ultimately similar and equal to each

other.

Note to Lemma S.

44. It is plain, from the words "
triangula tria

scmp>r fitrita" in this Lemma, that R B D is suppo-
sed to move parallel to itself, while d b r remains fix-

ed ; and not that R B D moves round R as a fixed

point ;
tor in the latter case the A S r A b, r A c b,

r A ii would be ultimately infinitely great, and the

purpose for which these last A 9 were introduced (sec

Art. 4-2.) thus rendered useless.



LEMMA IX.

45. Produce A E to any distant point e, and take

A e : Ad '.I A E : A D ; draw e c, d b parallel to

EC, D B, and let them meet the chords A C, A B
produced in c, b; then the A S A d Z, A ec being si-

milar to A D B, A E C respectively ; A b : A B
(I

: A d : A D : : A e : A E) : : Ac: AC; /. c, b,

will be in the curve A b c, which is similar to ABC;
in the same manner during the approach of C and
B to A, the points b, c, determined in like manner,
will always be found in a curve similar to A B C ;

and because the curves A b c, ABC are similar, the

areas A b d, Ace will be similar to the areas A B D,
ACE respectively, and they are .** proportional to

each other respectively ; for A B D : A b d
(I

'. A D*
I A d* : '. A E* : Ac*) I : A C E : Ace ;

/. altern .

A B D : ACE:: A b d : A c e. To the similar

curves ABC, A b c draw the tangent A F Gfg ;

then as C and B move up to A, and ultimately co-

incide with it, the /L c A g is continually diminished,
and will ultimately vanish, .*. the curvilinear areas

A b d, Ace will ultimately coincide with the recti-

linear areas Afd, Age; and be .*. ultimately to each
other as Ad* : A e*

;
.". also will the curvilinear

areas A B D, A C E, which are proportional to these

others, be also ultimately in the Ratio ofA d* : Ae*
or of A D* : A E*.

Note to Lemma 9.

46. We may observe here, that the Z, which
E A makes with the curve, as indeed all determined

Z. s
, and quantities of whatsoever kind in this and the

following Sections, are supposed to be finite ; New-
ton disclaims the use of infinitely small- determinate

quantities as unintelligible, and by the words ihfi-

K



nltely small Z 8
, or infinitely small quantities, he

means variable quantities, which by a continual flux

are decreasing without limit, (see Art. 23.)

LEMMA X.

Introductory Article to Lemma 10.

47. If the abscissae A B, A D, (Fig. 28) be as the

times in which a body, urged by any finite force, de-

scribes two spaces ; and the orclinates B C, D E be

as the velocities generated in those times; and if

A C E be the curve traced out by the extremities of

these ordinates, the areas ABC, A D E will be as

the spaces described.

Let the times be divided into any N. of equal

parts A F, F G, G H, &c., and complete the paral-

lelograms A K, F L, G M, &c. ; then if the force be

supposed to act only at equal intervals of time, so as

to make the body move uniformly during the times

A F, F G, G H, &c. with the velocities *F K, G L,
H M, &c., the spaces described in these times will

be represented by the parallelograms, and the sums
of the spaces by the sums of the parallelograms.
Now let the intervals of time be continually dimin-

ished, then will the force, which now acts by impuF-
ses, continually become nearer and nearer a force

acting incessantly; and the sums of the parallelo-

grams, which represent the spaces, continually ap-

proach nearer and nearer to the curvilinear areas,

till at length, when the intervals of time are dimin-

ished, and their N. increased in infinitum, the force

will become an incessant force, and at the same in-

stant the sums of the parallelograms become = the

curvilinear areas (Lem. II.); .". under the circumr
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stances mentioned in the Proposition, the spaces -will

be accurately measured by the curvilinear areas.

We may observe that in this, and Propositions of

the like nature, a false hypothesis is made, viz. that

the force acts by impulses, and by consequence we
deduce a false conclusion, viz. that the spaces are

represented by the sums of the parallelograms ; but

as the assumed hypothesis approaches to the true, so

does the false conclusion approach to the true con-

clusion; till at length, upon the attainment ofthe true

hypothesis, we attain at the same time the true con-

clusion : the true hypothesis and true conclusion

being respectively the limits of the assumed hypo-
thesis, and the conclusion consequent upon it.

Lemma 10.

48. Let the times be represented by the lines AD,
A E, and the veloeities generated, by the ordinates

D B, EC, then the spaces described with these ve-

locities will, by what has been just proved, be repre-
sented *by the areas A B D, A C E described by these

ordinates; but the prime R. of these nascent areas

A B D, A C E is (Lem. IX.) that ofA Da
: A E* ;

i. e. the spaces described are, in the very beginning
of the motion, in the duplicate R. of the times in

which they are described.
-,

Lem. 10. Cor. 1.

49. Let A B and a b (Fig. 30) be similar parts of
similar figures described by two bodies in proportional
times ;

and let two equal forces similarly applied act

upon the bodies, sufficient to make them move from
B to C, and from b to c, in the time that they would
have described A B, a b ; then they will describe two
other curves A C, a c ; and the limiting R. of B C :

be (which, as being the distances the bodies have
erred from their former course, are called errors in

this Corollary) will be that of the squares of the times

in which A B, a b would have been described. For
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B C, b c may be considered as spaces described from

rest in those times by equal forces, and .'. the Lemma
is applicable to them.

Note to Lemma 10. Cor. 1.

50. *' Are nearly, &c." Though strictly speak-

ing, by the spaces mentioned in this Lemma are

meant not any spaces actually described, however

small they be taken, but only the limiting ratio of

the spaces; yet still if B Ct b c be actual spaces de-

scribed, provided they are sufficiently small, they will

be as the square of the times quam proxime, i. e.

without any sensible error ; and thus this and the

next Corollary are applied in the 66th Proposition
to find the errors produced in the motions of the

moon, &c. by the attraction of the sun.

Lemma 10. Cor. 3.

51. Let AD, a d (Fig. 29) represent two equal

times, D B, d b the velocities generated in those

times ; then will the spaces be represented in jhe two

cases by A D B, a d b : but A D B : a d b \ I A D X
D B : a d X d b ultimately, : : D B : d b ultimately

(since A D = a d) i. e. in the very beginning of the

motion, space described varies as the momentary in-

crement of velocity when the time is given ; but the ve-

locities generated in an indefinitely small given time

are proper measures of the accelerating forces ;
.". in

the very beginning ofthe motion, space varies as force,

when time is given ; but (by Lemma) space varies as

Ta
, when force is given, .'. when neither are given,

the space will, in the very beginning of the motion,

vary as F X 'P.

LEMMA XI.

Introductory Artvclet to Lemma \ 1 .

52. Any two arcs of curve lines touch each other
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when the same right line is the tangent of both at the

same point ; but when they are applied upon each

other they never perfectly coincide, unless they arc

similar arcs of equal and similar figures; and the

curvature of lines admits of an indefinite variety.
Because the curvature is uniform in a given 0, and

may be varied at pleasure in them, by enlarging or

diminishing their diameters, the flexure or curvature

of circles serves for measuring that of other lines.

53. As of all the right lines, that can be drawn

through a given point in the arc of a curve, that is

the tangent which touches the arc so closely, that no

right line can be drawn between them ;
so of all the

circles that touch a curve in any given point, that is

said to have the same curvature with it, which touches

it so closely that no can be drawn through the

point ofcontact between them; all other circles passing
either within or without them both. This is called

the of curvature belonging to the point of contact.
The arc of this cannot coincide with the arc of the

curve, but it is sufficient to denote it the of curva-

ture that no other can pass between them ; as the

tangent of the arc of a curve cannot coincide with it,

but is applied to it so that no right line can be drawn
between them. As in all curvilinear figures the po-
sition of the tangent is continually varying, so the

curvature is continually varying in all curvilinear

figures, the only excepted. As the curve is se-

parated from its tangent by its flexure or curvature,
so it is separated from its of curvature in conse-

quence of the encrease or decrease of its curvature :

and as its curvature is greater or less, according as it

is more or less inflected from the tangent, so the

variation of curvature is greater or less, according
as it is more or less separated from the of curva-

ture. It is manifest that there is but one of curva-

ture belonging to an arc of a curve at the same point;
for ifthere were two such circles, any circles described

between these through that point would pass between
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the curve and O of curvature, against the supposition.

Having thus shewn what the of curvature is ; it

Avill be necessary to point out, in the next place, the

method of describing it ; this is done by the following

proposition :

54. Let M H (Fig. 31) be any curve, E T a tangent at the

point E, E B b a right line, making any L with E T ; T M R any

straight line parallel to E B, meeting the tangent in T, and the

curve in M ; then if the rectangle M T X T K be always taken

E T*, and F K B be the curve traced out by the point K.,t/ttts

taken, and if thit curve ultimately posset thfough B, the circle

whose chord it EB, and tangent E T, shall have the same curva-

ture with the curve E Nil at Uie point E ; and the contact Of

E M and E R shall be always the closer, the less the L is, tltat

is contained at B by the curve B K F, and the circle of curvature

BQE.

Let T K meet the in R and Q ; then R T X
T Q = E T* = M T X T K (by hypothesis) /.

R T : M T : : T K : T Q. Suppose first that B K,
the part of the curve B K F that is next to the point
B adjoining to it, falls without the B Q, and sup-

pose T K, by moving parallel to itself, to approach
to E B till it coincide with it; and while the point K
describes K B, T K being greater than T Q, R T
must be greater than M T, and the arc E M of the

curve must pass without the E R, betwixt it and
the tangent E T : and since any described through
E, upon a chord less than E B touching E T, falls

within the E R B, it is manifest that no such O
can pass betwixt the curve E M and O E R B. Nor
can any E r b described upon a chord E b greater
than E B touching E T pass between E R and EM ;

for let T K meet this O in r and y, then r T X T q
= ET = MT x TK; /. M T : rT::T? :

T K, and since F K B (by hypothesis) passes through
B so that the part of it, that is next adjoining B,
must be within the arc b q of the b q E, it follows

that while K describes this part of F K B, T q must
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be greater than T K ; and .'. M T greater than r T.
Therefore the arc E r of the O E r 6 is without the

curve EM, and passes betwixt it and the tangent E T.
Hence no whatever can pass betwixt EM and E R;
and consequently the E R B has the same curva-

ture with E M at E. Suppose now that the part of

the curve B K F, that is next adjoining to B, falls

within B Q (Fib. 31) ; then while K describes this

part of the curve F K B, T K being less than T Q,
R T must be less than M T, and the arc E M must
fall within E R ; and since any described through
E, upon a chord greater than E B, falls without the

E R, it is manifest that no such can pass betwixt

E R and E M. Nor can any E r 5 described upon
a chord E b less than EB touching ET, pass between
E R and E M ; for let T K meet this in r and q,
and M T being : r T : I T q : T K, and T q being
less than T K while K describes K B, M T must be
less than r T ; and consequently the arc E r must fall

within E M. Therefore, in either case, all the circles

that can be described through E fall without both
E R and E M, or within them both ; and no O
whatever can pass between them when the rectangleM T X T K is always = E T*, and the curve in

which K is always found passes through B ; i. e. the

E R B and the curve E M have the same curva-

ture at E, which was the first part of the proposition.
Let E m, (Fig. 32} any other curve touching E T

in E, and/"&B, another curve passing through B,
meet T K in m and k ; and let the rectangle m T X
T k be likewise always = E T* ; then the curvature

ofE m at E shall be the same as that of the E RB,
or that of the curve E M, by what has been demon-
strated.. Because m T X T k, M T X T K, R T
X T Q are equal to each other, T m : T M : I T K
: T k and T m : T R : : T Q : T k. Therefore if

the arc B k pass between B K and B Q, the curve E
m must pass between E M and E R so that E m must
have a closer contact with this , than E M h$*
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with it : and the less the Z. is, that is formed by the

curve F K B and the ofcurvature E Q B at B, the

closer is the contact at E of the curve E M H, and
the of curvature E Q B. Thus the curve B K F,

by its intersection with E B, determines the curva-

ture of K M ; and by the Z. in which it cuts the O
of curvature it determines the degree of contact of E
M and that ; the Z. BET and the right line E T
being given.

Cor. l. Since MT xTK = E T% T K =
ET*

Now let 3VI move up to E and coincide withMT
it, then will T K ultimately coincide with, and be

equal to, E B ;
.'. in all cases, whatever be the curve,

the chord of the of curvature = the ultimate

ET EM*
value of -

, or = the ultimate value of .MT MT
Cor. 2. It appears from the demonstration, that

according as the arc B K falls without or within the

arc B Q, the arc E M falls without or within the Q
E R B ; that when the curve F K B cuts the E RB
in B, the curve H M E cuts the of curvature in

E ; that when the curve F K B is on the same side of

the B Q E on both sides of B, the curve H M E,
continued on both sides of E, is on the same side of

the of curvature : and that the contact of the curve

E M H and the of curvature is closest when the

curve B K touches the arcs B Q in B, the Z B E T
being given; but is farthest from this, or is most open,
when B K touches the right line E B in B.

Cor. 3. There may be indefinite degrees of more
and more intimate contact between a E R B an'd

a curve E M II. The 1st degree is when the same

right line touches them both in the same point; and

a contact of this sort may take place betwixt any 0,
and any arc of any curve. Tlic 2d is when the curve

E M H and E R B have the same curvature, and

the tangents of the curve B K F and B Q K inter-
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sect each other at B in any assignable angle. The
contact of the curve E M and of curvature E R
at E is of the 3d degree or order, and their oscula-

tion is of the 2d when the curve B K F touches the

B Q E at B, but so as not to have the same curva-

ture with it. The contact is of the 4th degree or or-

der, and their osculation of the 3d, when the curve

B K F has the same curvature with the B Q E at

B, but so as that their contact is only of the 2d de-

gree: and this gradation of more and more intimate

contact, or of approximation towards coincidence,

may be continued indefinitely ; the contact of E M
and E R at E being always of an order two degrees
closer than that of B K and B Q at B. There is al-

so an indefinite variety comprehended under each

order. Thus when E M and E R have the same

curvature, the Z formed by the tangents of B K and
B Q admits of indefinite variety, and the contact of

E M and E R is the closer the less that Z is. And
when that Z is of the same magnitude, the contact

of E M and E R is the closer the greater the of

curvature is: for since TR : TM II TK:TQ,
div. R M (which subtends the Z of contact

M E R) : T R :: K Q : T K, and .'. R M : K Q ::

RT X TQ(E'P): KT X TQ; /.when ETis
KQ

given, RM Varies as , and when K Q (or

Z K B Q) is given, R M is less, in proportion as

the rectangle K T X T Q, which ultimately =
chord of curvature*, is greater. When B K touches
the O B Q at B, it may touch it on the same or on
different sides of their common tangent ; and the Z
of contact K B Q may admit of the same variety with
the Z of contact M E R in the former case. But
there is seldom occasion for considering these higher
degrees of more intimate contact ofthe curve E M H,
and of curvature E R B.

Cot: 4. The curvature is uniform in the only.
L



When the curvature of E M H encreases from E to-

wards H, and consequently corresponds to that of a

gradually less and less, the arc E M falls within

E R, and B K is within B Q. When the curvature

of E M doorcases from E towards H, and conse-

quently corresponds to that of a O that is gradually

greater and greater, the arc E M falls without E R,
and B K is without B Q. According as the curva-

ture of E M varies more or less, it Ls more or less

unlike to the uniform curvature of a 0, the arc of

the curve E M H separates more or less from the arc

of the of curvature E R B, and the Z. contained

by the tangents of B K F and B Q E at B is greater
or less. And thus the quality of curvature, (as it is

called by Sir I. Newton) depends on the Z. contain-

ed by the tangents of B K and B Q at B.
Cor. 5. Let the curve E M H for example, (Fig.

33) be a parabola, E B a diameter, E T the tangent
at E, then because parameter x T M = E T* =
M T X T K, T K is always = the parameter,
.*. in this case B K is a straight line parallel to the

tangent E T, which intersects E B in B, so that E B
is = that parameter. Therefore if upon the diame-
ter of a parabola, a right line E B be taken from E
the vertex of this diameter = to its parameter, a

E R B, described upon this right line as its chord,
that touches the parabola at E, shall be the of
curvature. And because the right line B K cuts the

B Q E in B, unless when E is the vertex of the figure,
the parabola cuts the of curvature (that case ex-

eepted) ; and passes within the of curvature when
it is produced towards the vertex, but without it when

produced the contrary way.
Cor. 6. When E B does not meet with the curve

FK, (Fig. 34-) but is its asymptote: any being
described touching E T in E, a greater shall al-

ways pass between it and the curve E M ; and the

greater this O is, the closer shall its contact be with

the curve E M. For since the curve F K produced



passes without any E Q B, how great soever, that

can be described through E, E M must always pass
betwixt E R and the tangent E T. This is the case

in which the curvature is said to be infinitely small,

(being less than that of any ) or the ray of curva-

ture infinitely great. Of this we have an example in

the vertex of the cubical parabola ;
for in that case

JE T3 = T M X a* (where
z

is a given square) .'.

E T3 E T* E T3- = a% but - - = T K, .'. --- = T K x
T M T M T M
E T, hence E T x T K s= the given square a*

,-
.'.

the curve F K is the common hyperbola, whose

asymptotes are E B and E T. The curvature is of

the same kind at the vertex of any parabola, wherein
T M is as any power of E T, whose exponent ex-

ceeds 2
; for F K, in all those cases, is an hyperbola,

of which E B is an asymptote.
Cor. 7. When the curve FK (Fig. 35) passes

through E, no can be described through E so

small, but a less shall pass between it and the

curve E M, and the less this is, the closer shall its

contact with E M be. For since the curve F K pas-
ses within any that can be* described through E
on the same side of E T, the arc E M is always with-

in E R. In this case, because the curvature surpasses
that of any 0, it is said to be infinitely great, or the

ray of curvature to be infinitely small. Of this we
have an example at the vertex or cuspid of the semi-

cubical parabola ; for in that case E T3 = M T* X
ET3

at (where a is a given line) .". -- = a} and

E T4 T* E
= a x E T ; but = T K,,M rP M T MT*

= T K*, hence a * E T = T K*
;

/. F K E is the

common parabola, whose lattis rectum = a, and
which touches E B in E.



Lemma 11.

55. Case 1. It follows, from Cor. 1. Art. 54, that

if A G, drawn perpendicular to A D, and B G,

perpendicular to A 13, intersect each other in G, the

limit to A G is the chord of curvature A I. For by
similar A S GA : AB :: AB : BD, /. GA =
AB5

, and consequently their limits are equal : but
B D

ABS

the limit of is the chord of curvature, (by Cor.
B D

1.) .*. also the ultimate value of A G is the chord of

curvature, or A G ultimately = A I. The proof of

the Lemma is .'. evident.

Case 2. Let B D and bd ('Fig. 36) be equally in-

clined to A D at any given Z ; draw B E, b c perpen-
dicular to A D, then by similar A S B D : b d '.'. B E
: b e : i. e. in the given K. of A B* : A I* by the

first case.

Case 3. Let the Z s at D and d (Ing. 36) be not

equal, i. c. let B 1), h d converge to some point O,
at a finite distance. Draw B E, b e perpendicular to

A D, then when A B, A l> are diminished without

limit their difference B/> will be diminished without

limit ;
.*. the Z. B O b will be diminished without

limit; but Z BO = Z A d O Z ADO; .'.

the Z A // () = Z ADO ultimately, and conse-

quently B D E, bde arc ultimately similar, and BD
: b d : : B E : b c, i. e. in the ultimate R. of A B* :

A/-*.

Lemma ll^-Cor. 2.

56. Let the sagittce E F, ff (Pip. 37} bisecting
the chords A B, A b

t meet in H ; join A H and pro-
duce it to K, making AH = H K ; join K B, K b

and produce them to D, d. By constructidn AH:
A K :: A F : A B, /. H F, K B or F L, B D arc

parallel. When B moves up to A, the ultimate R.
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of E L : B D is that of A E* : A B3
(by Lem.) or

that of A F* : A B* or that of 1 : 4 (for A F, A E
are ultimately equal). But B D : F L : .* A B : A F
: : 4 : 2, .*. E L : F L ultimately : : 1 : 2, consequent-

ly F E, E L are ultimately equal, and .". E F is ulti-

mately to B D I .' 1 : 4. In like manner ef is ulti-

mately to b d I : I : 4 ;
/. E F : B D : : ef: b d ulti-

mately, and E F : ef .* : B D : b d ultimately ; but
B D, b d converge to a given point K, .'. (Lem. Case

3), the points B, b meeting in A, B D, b d and con-

sequently E F, ef are ultimately as the squares of

A B, A b.

Lemma 11. Cor. 5.

57. By Cor. 1. A C : Ac :: C B* : cb* ultimately,

(Fig. 38) which is the property of the parabola; .'.

the curve A B, whatever be its nature, provided it be
of finite curvature (see Schol.) may ultimately be con-

sidered as a parabola ;
.*. the curvilinear area A C B

= f C D ultimately, and consequently the curvilinear

area A D B = ? C D ultimately = f of the A ADB
ultimately, and consequently the remainder, the seg-
ment AB, = T AADB ultimately ; but A A D B
varies as A D 3 or A B3

ultimately (Cor. 4) ;
.'. also the

curvilinear area A D B and segment A B vary as

A D 3 or A B 3

ultimately.

SCHOLIUM.

Introductory Articles to Scholium.

58. Prop. 1. Let there be two curves of any kind (Fig. 39)

A B, Ab, and suppose the L of contact BAD in the 1st case to

be indefinitely greater than the L of contact b AD in the other ;

then shall the curvature of A. B be indefinitely greater than that

ofAb; and conversely.
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Let A I, A i be the diameters of curvature of A B
AD*

and A b respectively; then A I = ultimately,

AD*
and A i -

ultimately, .*. A I : A i in the ul-
b D
AD* AD*

timate R. of : --, i. e. in the ultimate

R. of b D : B D. Now the Z B A D is indefinite-

ly greater than b A D by hypothesis, but the ultimate

R. of B D : b D is the same with that of those Z s
.,

for they ultimately measure them ;
.". ultimately B D

is indefinitely greater than b D, .'. A i is also in-

definitely greater than A I ; but the curvature varies

as -
;

.*. the curvature ofA B is indefi-
Dr

. of curve.

nitely greater than that of A b.

Next let the curvature of A B be indefinitely great-
er than that of A b, then shall the /I B A D be in-

definitely greater than the Z b A D ; for as before

A I : Aim the ultimate R. of b D : B D, and A i

is indefinitely greater than A I by hypothesis, .". B D
is ultimately indefinitely greater than b D, and con-

sequently the Z B A D indefinitely greater than the

Z. b AD.

59. Prop. 2. Let there be two curvet A B, A b, and let the .

ofcontactBAD bear a finite Ratio to the Z of contact b A D ;

then if the curvature of A B Definite, the curvature of A b untt

also befinite ; and convertety if the curvature ofA B, A b be both

finite, the / s

of contact BAD, bAD unll be to each other in a

finite Ratio.

For, as before, A I : A * in the ultimate R. of b

D : B D ; but b D : B D ultimately in a finite R.
by hypothesis, /. A I : A * in a finite R., but A I is

finite, .*. also A i is, and consequently curvature o

A b is, finite.
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Again A I : A i in the ultimate 11. of b D : B D ;

but the R. of A I : A i is finite by hypothesis .'. the

ultimate R. of b D : B D, and consequently that of

the Z.
s
. of contact, is finite.

Cor. 1. Let A B be any Q, then since the curva-

ture of a is always finite, it is manifest that the

curvature of all curves, whose Z s
of contact bear a

finite R. to that of this ; or, which is the same

thing, the subtenses of whose Z s
of contact bear ulti-

mately a finite R. to that of this 0, will be finite;

and if the limiting R. of the subtenses of the Z. of

contact of the curve and be not only finite, but

also a R. of equality, then the curve and have the

same curvature at the point of contact.

1 1

Cor. 2. Since A I : At '.I TT^: : TTTs tne cur~
B D bD

vatures of two curves are to each other as the Z s
of

contact, or as the ultimate subtenses of these angles.

Scholium.

60. In the above Lemma, the Z of contact is sup-

posed to bear a finite R. to that of a O, i. e. the

curvature is supposed to be neither indefinitely great,
nor indefinitely small (Cor. 1. Art. 59.) This is

manifest from the Lemma itself, which was proved on
the supposition that the diameters A G, A g had a

limit, viz. A I ; *'. <?. that the curve had a of curva-

ture. To shew, however, this in another point of

view, it may be worth while to prove (I) That, con-

versely to the Lemma, if B D vary as A D* ulti-

mately, the curvature of A B is finite. (2) That if

B D ultimately vary in any other R. greater or less

than that of A Da
, the curvature is not finite, but in-

finitely small or infinitely great. (3) That there may
be curves, whose curvatures are indefinitely great or

indefinitely small, and .again curves, whose curvatures

are indefinitely greater or indefinitely smaller than

that of those others, and so without end ; and thus
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that the Z of contact BAD may be divided into a

series of Z s
, each of which is indefinitely greater or

indefinitely smaller than the one which is adjacent to

it, and that this division may be continued sine limite.

(1) Let A E V (Fig. 40J be any 0, and A B the

curve, then since B D ultimately varies as A D* (by
AD*

hypothesis) B D ultimately = (where a is a
a

proper constant quantity), but E D ultimately =
AD*
.

,
/. the ultimate R. of B D : E D = that of

AV'
AD* AD*

: = that of A V : a. which last R. is

a AV
always finite, whatever be the value of A V provided
it be finite, and .'. the ultimate R. of B D : E D is

finite, and .". the curvature ofA B is finite, (by Cor.

1. Art. 59.)

(2) Let B D (Fig. 4-1) ultimately vary in any R.
greater than that of A D*, for instance A D3

, then

AD3

B D ultimately = (where a is a proper con-

stant quantity), also as before E D ultimately =
AD* A D 3 A D*

, /.BD : ED :: : ultimately,

a*
i. e. '. '.A D : ultimately ; but in the ultimate state

a*
A D is indefinitely less than , whatever be the

A V

value of A V provided it be finite, .". B D is ultimate-

ly indefinitely less than E D ; and .'. the curvature of

A B is indefinitely small, (by Art. 58) i. e. no
however great, can pass between the curve A B and

tangent A D, as appeared also from Cor. 6. Art. 54-.

And the same may be shewn when B D ultimately
varies as A D4

, A D5
, A D6 A Dn

, where n
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vided it be greater than 2) may be any N. whatever,
whole or fractional.

Next let B D (Fig. 40) ultimately vary in any
R. less than that of A D*, for instance A Di, then

AD^ A DlBD ultimately = , .'. BD : ED ::

ak. a%
AD* A V

:
-

ultimately, *. e. II : A D^ ultimately;A V a^
but in the ultimate state, A D^ is indefinitely less than

A V
, whatever be the value of A V provided it be

i
finite ; .*. E D is ultimately indefinitely less than B D,
and .*. the curvature of A B is indefinitely great; i. e.

there can be no 0, however small, which does not

pass without the curve (by Art. 58) ; as appeared also

from Cor. 7, Art. 54. And the same may be shewn
when B D ultimately varies as A D4, A D|, A Df
A Da

, where n (provided it be less than 2) may
be any fractional N. whatever.

(3) (j) Let BD (Fig. 42) ultimately vary as A D*,
then, as we have seen above, the curvature of A B is

finite.

(jj) Let A P be another curve, such that D P ulti-

mately varies as A D 3
, then will D P ultimately =

AD 3 AD*
; also B D ultimately = -

(where a and
ar b

5 are proper constant quantities) ;
'. B D : P D II

AD* AD 3 a*
-

: ultimately, ::
y-

: AD ultimately;

a*
but A D is ultimately indefinitely less than -7-, .*.

P D is ultimately indefinitely less than BD, or cur-

vature of A P is indefinitely small, as we have before

seen.

(jjj) Again, let A C be another curve, such that

M
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C D ultimately varies as A D4 = ultimately
-

,

7/t
3

AD3 AD4 w 3

/.PD:CD::- : -::-r:ADuUi-
o* w3 <r

mately, but A D is ultimately indefinitely less than

OT3

~^f /. C D is ultimately indefinitely less than P D,

or curvature of A C is indefinitely less than that of

A P, which is indefinitely small. And in the vefy
same manner, if the subtense ultimately varies fls

AD S
, A D6

, &c., we shall have a series of Z s
of

contact going on in infinitum ; each of which is inde-

finitely less than the preceding. Also between any
two of these Z s there may be inserted a series of in-

termediate Z s

going on in infinitum, nny one of

which is indefinitely less than the preceding. For

instance, between A D1 and A D3 there may be in-

serted the series A Dy , A D y, A Df, A D|, A D|,
ADy, AD T

T
4
> &c. &c. And again, between any

two Z s of this series, there may be inserted a new
series of intermediate Z% differing from each other

by infinite intervals, and so on without limit.

Next (j) let A E be a curve, such that E D ulti-

AD^
mately varies as A D-|, = ultimately ; then

AD4 AD3 b
ED: B D :: r- :

j
: : ^ : A D ultimate-

b

ly, but A D| is ultimately indefinitely less than ,
.*.

ultimately E D is indefinitely greater than B D, or

curvature of A E is indefinitely great, as has been
before shewn.

(jj) Again, let A F be another curve, such that

ADf
F D ultimately varies as A D 4 = r~ ultimately,
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A D4 A D | a
then F D : E D ::-- :

- :: : A D|
mi a\ m%

ultimately, but A D| is ultimately indefinitely less

a%
than ;

.*. ultimately F D is indefinitely greater

than E D, or curvature of A F is indefinitely greater
than that of A E, which is indefinitely great. And
in the *very same manner if the subtense varies as

A D, A Df, A D .....A Dn
, ( being any fractional

N. whatever less than 2) we shall have a series of
Z s

of contact running on in infinituni, each of which
is indefinitely greater than the one which precedes it
"
Neque novit natura limitem."



NOTES TO SECTION IL

INTRODUCTORY ARTICLES TO SECTION II.

61. DeJ*. Whatever tends constantly to solicit or

impel a body towards a fixed point or centre, is call-

ed a centripetalforce.
The centripetal force, which is found to exist in

the sun and planets, is, by way of distinction, called

gravity, or theforce ofgravity.
62. The word gravity is used in three different

Senses, or rather it is spoken of as being greater or

less in reference to three different measures. As (1)
we may say for instance that the gravity of the earth,

at the distance of one mile from its surface, is greater
than the gravity of the earth, at the distance of 1000
miles from its surface. By this proposition we mean
that the velocity uniformly generated in a given time,
in a body at one mile's distance from the earth's sur-

face, is greater than the velocity uniformly generated
in the same given time, at the distance of 1000 miles

from it. The word, when used in this sense, is call-

ed the accelerating force of gravity; and, in general,
when we speak of the force of gravity at different dis-

tances from the same attracting body, the accelerating
force of gravity is always understood. Hence the

following definition. * When the velocity uniformly
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produced in a given time is the measure by which

gravity is said to be greater or less ; then it is called

the acceleratingforce ofgravity?
This accelerating force of gravity is in all cases

found to be invariably the same at equal distances

from the centre of the same attracting body, and to

vary according to some regular law of the distance

from that centre; and hence it is, that the variation

of this force is usually expressed in terms of the dis-

tance from the centre of the attracting body ; for in-

stance, when it is said that gravity varies as the nth

power of the distance, the expression denotes that

the accelerating force of gravity (measured by the

velocity uniformly generated in a given time) in-

creases or decreases as the ntft

power of the dis-

tance from the centre increases or decreases ; and F
IH DD

is called the law of the accelerating force.

(2) Again we may say that the gravity exerted

upon a cubic inch ofgold is greater than that upon a

cubic inch of cork. Here we no longer refer to the

same measure as before, but mean by the Prop, that

the quantity of motion, uniformly generated in a

given time in the gold, is greater than that uniform-

ly generated in the same time in the cork, when

placed at an equal distance from the attracting body's
centre ; or in other words, that the weight of the gold
is greater than the weight of the cork. The word,
when used in this second sense, is called the motive

force of gravity, and as, when speaking of gravity at

different distances from the centre of the same at-

tracting body, we mean the accelerating force of gra-

vity ; so, when speaking of the gravity exerted upon
different bodies at the same distance, the motive force

of gravity is to be understood. Hence the following
definition. * When gravity is considered as greater
or less in proportion to the quantity of motion it uni-

formly produces in a given time, then it is called the

motiveforce ofgravity>

The only difference then betwixt the accelerating



and motive force of gravity is this, that inasmuch as

gravity produces both velocity and momentum, we
call it one or the other, according, as for the sake of

convenience, the Telocity or momentum is taken to

be the measure of it.

(3) Lastly, we frequently speak of the gravity of

different attracting bodies, as when we say that the

gravity of the earth is greater than the gravity of the

moon. By this Prop, it js meant that the accelerat-

ing force of the earth, at a given distance from its

centre, is greater than the accelerating force of the

moon at the same given distance from its centre; i. e.

that the velocity, uniformly generated in a body in a

given time, and at a given distance from the earth's

centre, is greater than the velocity uniformly gener-
ated in the same time, and at the same distance from
the moon's centre. The word, when used in this

last sense, is called the absolute force of gravity ; and
when the gravity of different attracting bodies is

spoken of, the absolute force of gravity (measured
in the manner above described) is always understood.

Hence the following definition. * When gravity is

considered as greater or less, in reference to the effi-

cacy of the cause which produces it, then it is called

the absoluteforce ofgravity.'

63. The acceleratingforces, acting upon bodies, at different dit-

tances from different centret of force, are as the absolute forcest

and the law of theforce jointly ; i. e. iff, and<p represent the ab-

soluteforces, D and d the two distances, and the law of the force

be the direct n^ power of the dittance; F : f :: * x Dn
: <P X

d.

For if the distances of the two bodies from their

respective centres be the same, the accelerating forces

are the same with the absolute forces, i. e. ifD = d ;

F : f.'. * : f ; and if the absolute forces be the same,
i. e. if * = f ; F : /:: Dn

: </; .'. when both the

absolute forces and distances are different, F '/''
* X Dn

: f X d*.
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Cor. Iff, p, and d 1
;\
F will be represented by

* X Dn
, or by the absolute force and the law of tle

force.

64. The motive forces Majid m, acting upon different bodies, at

different distancesfrom different centres offorce ; in other words,

the weights or tendencies of different bodies towards different

centres are in a joint Ratio of the quantities of matter in the

bodies attracted, the absoluteforces of the attracting bodies, and

the law of theforce.

For by last Art. F :/:: * X Dn
: p X dn

but in all cases MiTW.'lQxFi^X/
.*. M : m : : Q x * x Dn

: q x ? x dn.

Cor. Ifm, q> <f>
and d be all taken = 1

;
M will be

represented by Q X $ X Dn
.

PROPOSITION I.

Note to Prop. 1 .

65. Since (Fig. 43) the A S SAB, SBc, Scd,
&c. are always equal to each other, and to the AS

S-A B, SBC, SCD, &c. the whole S A B d is

equal to the whole polygon S A B C D, and their

limits will be equal ; but the limiting position ofA B d
is that of a tangent at A, and the limit of the poly-

gon S A B C D is the curvilinear area S A B C D ;

if .'. A d
( Fig. 44) be the space described in the tan-

gent with the velocity at A continued uniform, in the

time that the body describes A D with a variable ve-

locity, the area S A d will be equal to the area SAD.

Note to Prop. 1. Cor. 1.

66. If the areas described in a given time are not

equal, i. e. if bodies move in different orbits, the bases
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ot the A S
, which in all cases represent the velocitfes,

will be as those A S

directly, and the perpendiculars

upon the bases inversely, /. e. by taking the limiting

R% the velocities of bodies revolving in different or-

bits are at any points of the orbits universally as the

areas described in a given time directly, and the per-

pendiculars upon the tangents *to those points inverse-

ly. Hence, if the time be denominated 1, V = A B,
2 S A B 2a

but A B =
, .*.v = where a = area

perp. p
described in a given time, and p = perpendicular.

Prop. I. Cor. 2.

67. Suppose first the body to describe uniformly
the chords themselves A B, BC; join A V, then

since C V is = and parallel to B c, it is also = and

parallel to A B; .'. B V, which passes through the

the centre S, is the diagonal of the parallelogram
A B C V; now since the position of B V will not be

altered by the magnitudes ofA B, and B C, let them
be diminished in infinitum, then will they ultimately
coincide with the chords of two arcs successively de-

scribed in equal times (when those arcs are diminish-

ed in infinitum), and B V, which always passes through
the centre, will ultimately coincide with the diagonal
of the parallelogram formed by those chords.

Prop. 1. Cor. 3.

68. If the body actually moved over A B, B C ;

D E, E F, &c. and the force acted impulsively, the

force at B would be to the force at E accurately as-

B V to E Z, they being the uniform effects of the

force at those points ; but if the force act incessantly,
and consequently AB, BC; D E, E F be diminish-

ed in infinitum, the force at B will be to the force at

E in the ultimate R. of B V : E Z, t. e. as in the

last Cor. in the ultimate R. of the diagonals of the

parallelograms formed by the chords of arcs succes-

sively described in equal times.
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Prop. 1. Cor. 4.

69. Draw the diagonals C A, D F, which will bisect

B V, E Z in m and H, then (Cor. 3) F" at B : F
at E in the ultimate R. of B V : E Z or in the ulti-

mate R. of B m : E n ; but the ultimate magnitudes
and positions of B m, En are those of the sagittae of
two arcs ABC, D E F described in equal times,
which converge to the centre S, and bisect the chords

A C, D F when these arcs are diminished in infi-

nitum.

Prop. I. Cor. 5.

70. The parabolic arc described by a body falling

obliquely at the earth's surface may be deduced in

the same manner from the polygonal motion, only in

this case the sagittae will be equal and parallel to each

other ; these sagittae may, as in the former case, be

proved to be measures of the force, i. e. of the force

of gravity at the earth's surface ; hence the force of a

body moving in any curve will be to the force of gra-

vity in the ultimate R. of the sagittae of the arcs de-

scribed in equal times in the two cases. Now the

sagitta of the parabolic arc described in a very small

time, as one second, is known by experiment in feet ;

if .'. we can find the sagitta of the arc of any other

curve described in the same small time in feet, we
can make a direct comparison between the centripe-
tal force in the curve and that of gravity.

PROPOSITION II.

71. Let us first suppose that the body describes

the polygon A B C D F formed by the chords of this

curve, and that it is deflected only at the Z s
B, C,

D, &c. ; then since B c = A B, the body, if not act-
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ed upon by any force, would at the end of the second

portion of time be found in r, having described Be,-
but it is really found in C at that time, having de-

scribed B C ; C c .'. which completes the A B C c

must represent the quantity and direction of the force

acting at B, since it is the motion which, when com-
bined with B r, produces B C the real motion ; i. e.

the force at B must act in a direction parallel to Cc;
but since SBC

(
= S A B) = S B c, Cc and S B

are parallel, .*. force at B acts in direction B S; and
it may be shewn in like manner, that the force at C,
D, E, &c. is directed to the. same point 8. Now let

the sides of this polygon be diminished and their N.
increased ad infinitum, in which case the force acts

incessantly, and the body describes a curve line
; the

demonstration still remains the same, since it did not

at all depend upon the magnitudes of A B, B C, &c.

Prop. 2. Cor. 1 .

72. Let SAB, SBc (Fig. 45) be two equal A*
as in the Prop. ; draw c D parallel to B S, then if

S B C be greater than SAB, /. e. if the description
of the areas be accelerated, the vertex of S B C must
fall without c D, .'. if c C be joined, and B F be drawn

parallel to it, the centre of force S will be in B F,
and .". must have moved up from S into that line, or

it has declined towards that quarter towards which
the body is going; and in the very same manner
when the description of the areas is retarded, the ver-

tex of the A will fall within c D, or the force will

decline to the other side of S, z. e. in antecedentia.

OBSERVATIONS ON THE TWO LAST PROPOSITIONS.

On Polygonal and Curvilinear Motion.

73. Let A B C D (Fig. 46) baa polygon described



by a body round S, and suppose the straight lines A B,
B G, C D, &c. to be described in the same

indefinitely
small time T. No\v of this motion of a body in a

polygon, it may be observed, (1) That the force acts

only by impulses, which succeed each other after

equal intervals, viz. when the body is at the points B,
C, D, &c., and consequently that the uniform motion
of the body in any side of the polygon, as B C, is

compounded of two uniform motions; one which
would carry it in the original direction which it had
at B, viz. through BE (= A B) in the given time

T; and the other, which would uniformly carry it

through E C, parallel to B S, in the same time T.

(2) That this uniform velocity towards the centre is

generated the moment the body arrives at B, by the

instantaneous impulse of the force, and is just equal
to that which a body would acquire by falling from
rest in the given time T, by the uniform action of the

same force.

Now let us, in the next place, suppose the body to

describe the curve A B C D, and to be found in the

points A, B, C, D, Sec. in the same instants of time

that the body in the polygon was. Then the body,
when at B, will no longer have the direction B E as

in the polygon, but the direction B G, which is a

tangent to the curve at B ; since then, if the force had
not acted, the body would have been found in B G,
but is really found in C: it is evident that C G must
be the space through which the force has drawn the

body in the given time T; which line C G, since the

force in the indefinitely small time T will not change
its direction, must coincide in position with C E.
Now it will be shewn, Art. 80, that C A ultimately
= 2 C L, ami that B G is parallel to C L ;

.'. C A
ultimately = 2 B G, and .*. E C ultimately = 2 G
C ; that is, the deflection in the polygonal motion is

ultimately just double the contemporaneous deflec-

tion in the curvilinear.

This difference in the deflection is what constitutes
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the chief distinction betwixt a polygonal and curvi-

linear motion ; and a very little consideration will

shew that it is just what ought to take place, from the

difference of the hypotheses in the two cases. For
since curvilinear motion is a case of continued deflec-

tion, the velocity towards the centre, in any one in-

definitely small portion of time, is a variable velocity

beginning from nothing ; whereas in the polygonal
motion it is the velocity so acquired continued uniform
for the same time ; consequently, since the force for

the indefinitely small time T will be constant, the

space described in the former case ought to be only
half what is described in the latter. Hence it is per-

fectly legitimate to reason from a polygonal to a cur-

vilinear motion, and the only difference between them
is this : thut as in the curvilinear motion the force

acts incessantly, so, to make up for this, there is a

proper corresponding diminution in the space through
which it has to draw the revolving body.

Cor. 1. Hence the force is measured, both in the

polygonal and curvilinear motion, by the same quan-
tity, viz. by the ultimate value of E C or 2 G C; for

in the former case E C being the space uniformly de-

scribed by the action of the force in the given time in

which B E is described, is a proper measure of the

intensity of that force ; and, in the latter case, since

G C is a space freely described from rest in the same

given time, 2 G C will be a measure of the fluxion of

the velocity uniformly generated in that time, or a

measure of the force.

Cor. 2. Let S B = #, then G C being the deflec-

tion of the curve from the tangent ultimately = ^ i)t

.'. force in curve (varies as 2 G C) varies as y.
Cor. 3. Though the force in the curve is properly

measured by twice the subtense of the arc described

in an indefinitely small given time; yet when the

forces to be compared together, are all computed in

the same way, it matters not whether we take the

subtenses, (as Newton generally does, see Prop. 1.
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Cor. 4<) or their doubles, as the measures of them ;

the R. being the same in both cases: Nevertheless,
when the forces so found are to be compared with

others derived from a fluxional calculus, (which has

always a reference to the polygon) it is absolutely ne-

cessary to take the double subtense for the measure
of the force.

PROPOSITION IV.

74. Since the bodies (Fig. 47) move equably in the
s

, equal areas will in each case be described in equal
times ; consequently equal sectors or areas will be de-

scribed round the centres S, s in equal times ;
.*. the

centripetal forces tend to the centres of the ". Again
let B A E, b a et be two arcs described in the same

indefinitely small time, then AC, act which bisect

the chords and tend to the centres of the
s
will be

the sagittae of these indefinitely small arcs ;
.". F" at A

: F at a in the ultimate R. of A C : a c, or of

chord A B* ch. a b* arc A B2 arc a 6*
_ __ ___ _____ .

A G ag A G a g
(Lem. 7). Now let A F, af, be any two arcs de-

scribed in equal times ; then, since the motions are

uniform, A B : a b '. '. A F : afy
.'. F at A : F at a '. '.

arc A B* arc a P arc A F* arc af*

A G ag AS as
75. If the absolute forces be different, the expres-

sion for the force is the same ; for the accelerating
force is in all cases proportional to the subtense of the

arc described in an indefinitely small given time.

Prop. 4. Cor. 2.

76. Let F andybe the centripetal forces of bodies

describing different s
, V and v their velocities, P
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and p their periodic times; C and c the circum-

ferences of the 0s, R and r their radii ; then since in

all cases of uniform motion, velocity varies as space
\_/ c

directly and time inversely, V : v 1 1
- -

: II (since
p p

R r
the circumferences of 0s are as their radii) : .

P P
R- i- V* v*

.'. V* : fl
s

II
-

: .
; hence F:/ II -

:
--

II
Pa p R r

R r

Note to Prop. 4. Cor. 7.

77. Let <f>
= absolute force, and the law of the

1

force be ; then if bodies revolve round differ-
Ri n_,

ent centres, accelerating force will (Art. 63) varies as

9 Rn &
.*. P varies as , and V varies as - .

R"- 1

pi R"-'

Introductory Articles to Prop. 4. Cor. 8.

78. Let P Q E be any curve, (Figs. 48 and 49)
and S any point within it; take any point st and from
it draw any line s p; suppose the radius vector S P of

the curve P Q E to revolve round S, and at the same
time let the line sp begin to revolve round s, with an

angular velocity always equal to that of S P, and so

that sp may always be to S P in a given R. ; then

will the curve, traced out by p, be similar to the curve

P Q E (Art. 30). The points S, s> arc called points

similarly situated ; and if Z.
s

p s qt psc, &c. = Z.
s

P S Q, P S C, &c. respectively, then
/?, </,

ct &c., and

P, Q, C, &c. are called similar points: s/>, s y, sc,

&c., and S P, S Q, S C, &c. similar or homologous
lines ; p q, p c, q c, &c,, and P Q, P C, Q C, &c. si-

milar or Homologous arcs : and psq, p sc, q s c, &c.,



103

and P S Q, P S C, Q S C, &c. similar areas of the

similar figures respectively.

79. From the definition of similar figures it fol-

lows, (1) That if S, s be points similarly situated, the

chords of similar arcs P Q, p </,
make equal

s with

the radius vectors 8 P, sp , and are to each other in

a given R.. For since PS : SQ'.'.ps : sq, and
Z PSQ = ^.pscjy .*. A S P S Q, p sq are similar;

/. Z Q P S = Z qp s, and P Q : p q :: P S : p s

in a given R. (2) That the tangents to similar

points P, p, make equal Z. s with the radius vectors'

to those points ;
for Z 8 P Q always = Z~ sp q by

the first case, .". they are ultimately equal ; but these

Z,* are ultimately the Z s
between the tangents and

the radii, .'. Z. S P II = Z. s-p r. (3) That similar

arcs P E, p e, as also similar areas P S E, p s e, of

similar figures are to each other in a given R. ; for

let the similar arcs P E, p e, be divided into the same
N. of similar arcs P Q, Q C ; p q, q c, &c., and draw
the chords ; then, by the first case, these chords are

to one another in a given R., viz. in the R. of S P
: sp i consequently the sums of the chords are in the

same given R. ; and since this is always the case, they
are also ultimately in this given R. Hence, Cor.

Lem. IV., the arc P E : the similar arc p e in that

given R ; /. e. similar curves, or similar arcs of simi-

lar curves, are to one another as any similar or ho-

mologous radius vectors. And in the same manner,

by dividing the similar areas into similar parts, we
have the areas of similar curves, or of similar parts of

similar curves to one another in a given R., viz. in

the duplicate R. of any homologous radius vectors.

(4) That the similarly situated chords of curvature

P V, p v to similar points of similar figures, are as

the radius vectors to those points, or as any other

homologous lines in the figures. For draw the sub-

tenses Q R, q r ofthe evanescent arcs P Q, p q parallel
to S P, jsp; then, by the nature of the of curva-

ture, PV: PQ::PQ : Q R; and^ v :p<l '-'-pq :
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qr ; but by similar A S PQ : QR '.'. pq: q r, .*.

P V : p v '. : P Q : p q '.'. S P : sp, or as any homolo-

gous lines in the figures.

80. Let A P Q be any arc, (Fig. 4-8} A Q the

chord of that arc ; S the centre of force. Draw tho

radius S P bisecting the chord A Q, then will P N
be the sagitta of the arc A P Q at the point P where
S N meets the curve ; draw the tangent B R, and the

subtenses Q R and A B parallel to S P, and let P V be

the chord of curvature at the point P ; this being pre-

'mised, it follows (1) That this sagitta will ultimately
bisect the arc A P Q, or that the point P is ultimate-

ly in the middle of the arc A P Q ; for since Q N =
N A, and that Q N ultimately = arc Q P, and A N
ultimately = arc AP, /.arcQ P ultimately = arc A P.

(2) That the chord A N Q is ultimately parallel to the

tangent P R drawn to the curve at the point P ; for

A B is ultimately to Q R as P R* or P Q* to P B* or

P As
, i. e. in a R of equality ; they are also parallel,

.*. A Q and P R are also ultimately parallel. (S)
That the evanescent subtense Q R or A B is ultimate-

ly = to the sagitta P N, which ultimately bisects the

arc A P Q ; for R N is ultimately a parallelogram, .".

Q R and P N are ultimately equal.

Prop. 4. Cor. 8.

81. Let APE, ape (Figs. 48 and 49) be two

similar figures, having the centres of force S, s similar-

ly situated in them, P and p similar points of the or-

bit, A P Q, ap q two arcs described in the same time,

whose middle points are ultimately P and pt join S P,
s p ; then since P N, p n ultimately bisect the arcs

A P Q, ap q, they are ultimately the sagittse of those

arcs (Art. 80), .*. centripetal force in P : centripetal
force in p in the ultimate R. of P N : p n ;

or of

Q~FA* j^TaF
Q R : q r (Art. 80), or of -

:
-

, or by
P V pv
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reason of similar figures, (Art. 79) in the ultimate R
QPA* qp a*

of
PS ps

Hence the centripetal forces in these similar points
are also as the squares of the velocities directly, and
the distances inversely ;

for the velocities are in the

ultimate R. of the arcs A P Q, a p q described in the

same time.

Again, the centripetal forces at those similar points
are also as the distances directly, and the squares
of the periodic times inversely. For let A P Q, ap q
no longer represent evanescent arcs described in the

same time, but similar evanescent particles of the

similar curves, described in the indefinitely small

times T and t ; also let V and v represent the velo-

cities at P and p , A and a the whole areas of the

similar figures ; P and p the periodic times ; then

since A P Q, a p q may be considered as described

..APQ apq SP sp
uniformly, V : v . . : . :

T t T t

V* 0*

(by Art. 79) ; but F at P : F at p SP
*

so
9

SP sp
/. F at P : F at p : : : =-. But since T : P

'.'. S Q A : A and t : p .' : s q a : ar, and that S Q A
: s q a : : A : a (Art. 79), /. T : / : : P : p ; hence F

SP sp SP sp
at P : F at p :: - -

:
-= :: : .

T* * P* p*

V* D
Hence since F varies as and as in similar

figures, the preceding Cors. will apply to bodies de-

scribing similar parts pf similar curves, having their

centres of force similarly situated ; for Ex. if the peri-
odic time be as the <A power of any homologous
radius vectors, the forces will be reciprocally as the
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2/j 1
th

power of any homologous radius vectors, and
the contrary : and note, when distances arc mention-

ed, the similar or homologous distances are always
understood.

Prop. 4. Cor. 9.

82* Let P A
( Fig. 50) be an arc described in any

time, P B the space fallen through in the same time

by the force at P continued uniform ; take P Q an

evanescent arc, Q R the subtense parallel to P S, and

complete the parallelogram ; then the evanescent sub-

tense Q 11 or P C is the space fallen through by the

centripetal force, in the same time that the arc P Q
is described (Art. 73). Let T and t represent the

times of failing through P B and P C, or of describ-

ing the arcs PA, P Q; then since S varies as T*,
when F is given, P C : P B :: /

a
: T* :: P Q1

: P As

PG PG PG PG
and PB: PA::PA:PG.

DEDUCTIONS FROM PROP. 4- AND ITS C&RS.

85. Suppote a body to revolve uniformly in a circle ; required

the space through which it must fall, when acted upon by the cen-

tripetalforce at the circumference continued uniform, in order to

acquire the velocity it has in the circle.

Let P B (Fig. 50) = required space, and suppose
P A to be the arc uniformly described in the time of

the body's falling through P B, then-P A = 2 P B ;

but (Cor. 9) P B : PA :: P A : P G, i. e. P B : 2

PS
PB::2 PB:PGor2 P S, .'. P B = - = |

2
radius.



S4. Required the same in any curve.

Let P O (Fig. 48) = required space, P V = chord
of curvature, P Q an indefinitely small arc, and Q R
(= P N) the subtense of the Z of contact; then since

the velocities are as the spaces uniformly described in

the same time, velocity in curve : velocity acquired

through P N : : P Q : 2 P N, /.

V* in curve : Vz
through PN :: P Q* : 4 P N3

; but

V* thro' PN; V3
thro'PO, or V* in curve :: PN : PQ

/. PQ3 X PN = 4PN* X PO, and P O =r

P Q* P V
rjrxT

= ~~7~ i of chord of curvature.

85. Required the velocity and periodic time of a body revolving

in a circle at the earth's surface.

Let P Q (Fig. 50) be the arc described by the

body in one second, P C the space fallen through by
gravity in the same time, = 16A feet by experi-
ment, = suppose to 772, r = radius of the earth in

feet: then (Cor. 9) m : P Q : : PQ : 2 r, ./. P Q =
*f 2 m r ; but P Q being the arc uniformly described

in a given time, is a proper measure of the velocity,

V the required velocity = V 2 m r feet per second.

Again to find the periodic time, we have ^ 2 m r

= arc described in one second; and if T = 3. 14159
&c. the whole circumference of the circle = 2<rr,

*

since the motion is uniform, V 2 m r : 2 * r ''. 1"
:

2 * r /2~r"
P. T = ^ ' =r cr x V~ ~in seconds, r be-v 2 m r

ing expressed in feet.

Cor. 1. The velocity in miles = 4,92083 per se-

cond, and the P. T = l>r 24m 27s
.

Cor. 2. Hence if a body be projected from any

point P on the earth's surface in a horizontal direc-

'ion with the velocity of ^ 2 m r feet in a second, it
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will revolve as a secondary round the earth ; for sup-

pose a body so to revolve, then at the point P it will

have the same direction, the same velocity, and be act-

ed upon by the same force as the projected body, .*.

if the revolving body continue to move round the

earth in a , the projected body must also revolve

in the same manner.

Cor. 3. Hence also having given the radius of the

circle described by any revolving body, and its velo-

city or periodic lime, we can compare the centripetal
force with that of gravity. For since by Prop. 4, F

V* V* 0*
varies as . F : f '.

"

: ; call f the force
R R r

of gravity, then will r = the earth's radius, and 0* =

2 m r, .'. F : gravity '.'.
-

: 2 m.
R
R r

Again since F : f '. '.

-
:

-
; caliythe force

pa p^
of gravity, then will r = the earth's radius and/)* =
2 T* r R m r R

,.-.F: gravity"
_ :

- :: =

; where R must be expressed in feet, and P in

seconds.

Cor. 4-. We frequently meet in mathematical
V*

writers with the Equation F =-
, i. e. F is said

R
V*

not to be proportional, but absolutely equal, to
R

the Equation is deduced from the following supposi-

tion; we had in the last Cor. F : force of gravity '.'.

v-
: 2 m ; now let the force of gravity be repre-R

sented by its effect produced in a given time as 1", or
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V* V*
by 2 w; then F : 2 m '.'.

----
: 2 m, .'. F = .-

.

iv R
It must always .*. be kept in mind that when F is

V*
affirmed = -

, it is done only on the suppositionR
that gravity is represented not by unity, as is usually
done, but by 2 m, its effect produced in I". If we

represent gravity by unity, we shall then have F : 1

V*
'.'.
- -

: 2 m ; and in this case our Equation will be
XV

V*
F = - , a conclusion deduced on the supposition

2m R
that gravity is represented by 1. The difference then

V* Vs

in the two equations F = - and F =-
R 2/wR
Va

consists in this ; that the former, T> is the mea-

sure of the centripetal force, estimated by the N. of

feet which it generates in 1" ; i. e. it expresses a cer-

V*
tain N. of feet ; whereas the latter, ~r>' is an ab-

stract N., which is to the N. 1 : : F : to the force of

gravity; i. e. it is a certain multiple or part of the

abstract N. 1.* To shew the use of the two last

* From what has been said, we may easily perceive the reason

of the apparent contradiction in the above equations, viz. that

V* V*
since F = p , and also F = ~, .*. F == 2 m F ; to avoid

"> 2 itv

however any seeming absurdity of this kind, it would perhaps
be better to represent the force in the latter equation by F as

before ; and the force in the former equation, which is the tffect of
the force in the latter, by ; the equations would then have been

V* V-
E = and F = -

--, .-. E = 2 w F a true equation, as

R 2mR'
may appear from hence : let gravity be represented by i, and
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Cors. let us apply them to the solution of the follow-

ing Problems.

86. 1. Let a body revolve in the circle MED, (Fig. 51) with

a velocity acquired in Jailing through M B by gravity ; required
the Ratio of the centripetalforce to that of gravity.

Let V = velocity in curve, then Vs = 4 m x
V*M B hence since F varies as , we have as in
Xv

. ^ 4 MX MB
first part of Corollary 3, F : gravity I :

: 2i::2 MB : MS.
Cor. If the body be made to revolve uniformly in

the M E D by means of a weight fixed to a string ;

then we shall have the tension of the string arising
from the centrifugal force of the body, to the tension

arising from the same weight hanging freely, in the

above R. of 2 M B : M S.

2. Compare theforce ofgravity with the centrifugalforce at the

equator.

Let P = time of the earth's revolving round its

axis in seconds, R = radius of the earth in feet; then

R
since F varies as , we have as in 2dpart of Cor.

3. Centrifugal force at Equator : Force of gravity '.'.

R m

P* 2-r*

S. Given the moon's periodic time, and the radius of her orbit /

tofind howfar she would fail in 1", supposing her projectile tuo-

tion to be destroyed.

Let P = moon's periodic time, R = radius of her

the centripetal force by F, and the effect of the force F by E ;

then gravity or l : F : : the effect of gravity In a given time or

2 m : the effect of F in the same given time, or E ; .*. E =
2 F,
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orbit, then since F varies as- wehave force ofgra-
P3

R m
vity at distance of moon '.!'.'.- : , .*. F =

P* 2<r*
* 2* 3 R

,
/. S = m F T* = - -.

mP
4. Required the periodic time of a body describing a conical

surface.

The body at B (Fig. 52} is retained in its orbit

by three forces ; gravity in direction S A, tension of

the string in direction BS, and centrifugal force in di-

rection A B ;
.*. the sides of the A S A B will repre-

sent them ; hence centrifugal force or F : gravity or

AB
1 .' : A B : S A .'. F =-

; hence since F varies as

S A
R AB AB TO 2*S SA

wehave - -
: 1 II- :

-- .*.P* =-
P3 2** m

m
Cor. 1. Hence periodic time : T through 2 S^A '.'.

1 : . circumference of
m

: diameter.

Cor. 2. Required the periodic time when the ten-

sion of the string = 3 times the weight of the body.

Let S B = L ; then will S A, by Problem, = ,

AB SAB 3AB .AB
" F = "c~T = T : kence

o A JLi

m 2 #* S A
- pa
, . f

2 a* m 3m
(TL
nn?
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PROPOSITION VI.

87. Let B P Q, bp q, (Fig. 53} be two indefinitely
small arcs described in the times T, t ; S and s the cen-

tres offeree; SCP, scp, the radius vectors, which ulti-

mately bisect the chords BQ, bq^ and .'. also ultimately
bisect the arcs B P Q, b p <?,

in P and 77, (Art. 80) ;

draw the tangents P R, p t; and the subtenses Q R,
q r parallel to S P, sp , let also K P L be an arc de-

scribed in the same time with bp q, and which shall

be ultimately bisected bySP; then will its chord
K L also be ultimately bisected by S P, and conse-

quently PC, P N, p c, are ultimately the sagittae of

the arcs B P Q, K P L, bp q. Hence since K P L,

l}p q are arcs described in the same time,

P N : p c 1 1 F at P
PC:PN:: PQ*:
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ultimately proportional to the time of describing PQ ;

QR qr
hence Fat P: Fat ,

QR qr
'.'. (since m the same curve

Ta ..P Q T*..p q
QR

the areas are proportional to the times) =
SPQ*

qr QR qr 2R

q* ^SP. QT*
q r

i. e. the centripetal force, in different points
Sp.

z
q t>

of the same curve, is in the ultimate Ratio of

SPa.QTa
.-_ inversely.

Q R

Notes to Prop. 6. Cor. 1.

S P z Q T*
89. - -is called a solid, because it is ofthree

Q Tz

dimensions ; for being a third proportional to
Q R

two lines Q R and Q T, must also itself be a line, and

S P * O T*
S Pa

is the product of two lines ;
.'. -

' ^_ is

QR
the product of three lines, and is therefore analogous
to the solid content of a parallelopepid, whose three

adjacent sides are the three lines. Again, not only is

the Ratio 5L?1_9_!1 :

sP-*9* a fin ite Ratio up-QR qr
on the coincidence of P and Q, but the terms of the

R. also are always finite ; for S P* is finite, also since

the A S S P Y, Q N T are ultimately similar S P* :

QT* QN*
SY*::QuT*:QN*::--- :

--
:; but the

QR QR
p
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QN*
limit of-- is the chord of curvature P V a finite

Q R
QT*

line, .". also the limit of--, and consequently of
Q R

SPa
. QT*

90. Let A and B represent any two areas described

in different curves in the times T and t ; a and 6 die

areas described in the same two curves in the same
A B

given time as I", then will T :/.*!-- : . For
a b

since in the same curve, the areas are proportional
to the times of description,

A : a '.'. T : 1" ; for the same reason
b : B:: I"-, t

A B
.'. A b : Btf : :T: t or : : : T : t; i. e. the times

a b

of describing any two areas in different curves, are as

those areas directly, and the areas in a given time in-

versely. If T and t =. the whole periodic times, A
and B will represent the whole areas of the orbits ;

r. c. the periodic times in different curves are as the

whole areas directly, and the areas in a given time

inversely.
91. The formula for the centripetal force, given in.

the above Corollary, is only applicable to the finding
the variation of the force, in different points of the

same orbit, and docs not extend to different curves ;

for in the proof of that Corollary, the area S P Q
was assumed proportional to the time in which it was

described ; which is not true for different orbits (un-
less indeed in these equal areas are described in equal

times.) The expression for the force may however
be made general by Art. 90, thus,

QR
In all cases F varies as =; p ^ ; but by Art. 90

Jl ..i.l \~t
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"P....P Q or T*.... area S P Q is proportional to the

area S P Q 2 area S P Q--- in all cases, or to .

area dat. temp. area dat. temp.
Let .". a = area described in a given time, then the

Q R Q R X a*
force F will vary as

g p a Q 'p*
as

"g p* Q p
a*

which is a general expression applicable to different

orbits round the same, or different centres of force.

Or ifA = whole area of curve, since a : A : '. I" : P. T
A

(if P. T denote the periodic time), .*. a = ,

*

QR X Aa

F varies as
g p a ^ ^

=r, which is also gene-

ral for different orbits.

Prop. 6. Cor. *.

92. Draw S Y, Sy (Fig. 54) perpendicular to

the tangents at P and p ; then since S P X Q T =
S Y X Q P, being each ultimately double of the

A S Q P, and that Sp X q t = Sy X q p for the

same reason, .'. F. at P : F. at p in the ultimate R.

r* SY* x QP*

Notes to Prop. 6. Cor. 2.

SY* x
98. Jbor the reasons given in Art. 89,

-
^.
i< I

is a solid, and it is also finite upon the coincidence

QP*
ofQ and P ; for S Ya

is finite, and _ is ultimately
v^ Jbt

= chord of curvature P V, a finite line.

94. The above Corollary is only applicable to dif-

ferent points of the same curve, for the reasons given
in Art. 91 ; but it may be made general by the me-
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thod pursued in the former Corollary, from which it

appears that the centripetal force will vary ultimately

QR X a* QR X A*
>r asSY* x QP*. SY'xQP'XIYP'

Prop. 6. Cor. S.

95. By Cor. 2, F. at P : F. at j>
::

qr QP*
ultimately, but -

is ultimately =QRx

chord of curvature at P = P V, and- = p v,

I 1

xpy

Notet to Prop. 6. Cor. 3.

fl*

96. In general F varies as \, or as

A*
'

SY* x PVxP.T*
97. From this Cor. may easily be deduced De

Moivre's expression for the centripetal force. For
let P N (Fig. 55) be the curve, P F the diameter of

curvature, and PC = radius of curvature = R, the

rest as before ; then by similar A", S P : S Y *
I P F

211 X SY
(2 R) : PV = r-= ,

.* F varies inversely

SY* x R
as r-^r ; which expression may be made gene-o P
ral in the same manner as the rest.

Prop. 6. Cor. 4.

98. By Cor. 3, F. at P : F. at p :: SY xpv
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-, but (Cor. 1. Prop. 1) SY* :

&3T X pv
V.* at P

V.* atp : V.* at P; /. F. at P : F. atp :: py
V.' at^> V*

; , or the centripetal force varies as ~r~ 5-

p v ch. curv .

Notes to Prop. 6. for. 4.

99. Now let there be two different orbits, and let

the areas described in a given time in each be A and
A*

a : then, Art. 96, F. at P : F. atp '. :

SY* x py :

; but in different orbits SY* : Sy* II

^-_ (Art. 66); .*. F. at P : F. atp

, the same as before. Hence

Sy* X p v

V.'atP
V.* at P V. at p

:: PV p v

V*
the formula - for the centripetal force in Cor. 4

is general, and applicable either to one or different

orbits, round the same or different centres of force,

and the reason why a general expression should be

deduced from one that is not general, is obvious from
the method of proof observed in this Note.

V*
100. The Equation F = is of frequent oc-

curence in mathematical writers ; this Equation is de-

V*
duced from the following supposition ; F if-'

'

; where J\ v, and p v are some known standard
pv
quantities; let this standard force,/ be the force of
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gravity acting upon a body revolving at the earth's

surface ;
then v* =r 2 m rt and p v = earth's diame-

V* 2m
ter = 2 r, .". F : force of gravity I : : . Now

Jr V &

let the force of gravity be represented by 2 m ; then

V* 2m 2V* V*
F : 2m :: :

' F = = . It

P V 2 PV *PV
must always .*. be kept in mind that when F is said to

V*
= , it is upon the supposition that gravity is re-

2

presented by its effect produced in I" or by 2 m ; and

consequently that is the N. of feet that a body
5* V

would fall in 1" by the uniform action of the force F>

see Cor. 4. Art. 85.

Or the Equation may be thus deduced. In gene-
PV

ralVi = 4mFS=4wFx -
(Art. 84) = 2 TO

4

PV
F X ; but gravity or 1 : F :: the effect of gra-

vity or 2 m : the effect ofF = 2 m F = E /. V* =
PV Va

EX andE;= .

V*
Cor. Hence F = , gravity being represent-

m, P V
V*

ed by 1 ; and F = , gravity being represent-
5
" V
V* V*

ed by 2 m, or F = - and E = .
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INTRODUCTORY ARTICLES TO THE REMAINING PARTS

OF THIS SECTION.

101. If a body, urged by any centripetal force, is moved in

any manner ; and another body ascends or descends in a right line ;

and their velocities are equal in any one case of equal altitudes,

tJieir velocities will be equal at all equal altitudes.

XEWT. LIB. I., PEOP. 4O.

Let any body descend from A (Fig- 56) through
D, E, to the centre C ; and let another body be moved
from V in the curve line V I K k. With the centre

C, at any intervals, let the concentric circles D I,

E K be described, meeting the right line A C in D
and E, and the curve line V I K in I and K. Let
I C be joined meeting K E in N ; and let the perpen-
dicular N T be drawn to I K ; and let the interval

D E or I N of the circumferences of the circles be

very small ; and let the bodies have equal velocities in

D and I. Since the distances C D, C I are equal,
the centripetal forces in D and I will be equal. Let
these forces be expressed by the small equal lines D E,
I N ; and if one force I N is resolved into two NT and

IT; the force NT, by acting in thedirection of the line

N T, perpendicular to I T K the path of the body,
will not change the velocity of the body in that path,
but will only draw the body from its rectilinear

course, and make it turn aside continually from the

tangent of the orbit, and proceed in the curvilinear

path I T K k. In producing this effect, that whole

force will be employed : but the other force I T, by
acting in the direction of the course of the body, will

be wholly employed in accelerating it, and in a very
small given time will produce an acceleration proper-
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tiomil to itself. Therefore the accelerations of the
bodies in D and I, produced in equal times (if the

limits of the ratios of the nascent lines D E, IN,
I K, I T, N T are taken) are as the lines D E, I T ;

but in unequal times, are as those lines and the times

jointly. But the times in which D E and I K are

described, because of the equal velocities, are as the

spaces described D E and I K; and therefore the

accelerations, in the course of the bodies through
the lines D E and I K, are as D E and I T, D E
and I K jointly ; that is, as D E* and the rectangle
I T X I K. But the rectangle I T X I K is equal
to I N3

, that is equal to D E* ; and therefore equal
accelerations are generated in the transit of the

bodies from D and I to E and K : therefore the

velocities of the bodies in E and K are equal : and

by the same argument they will always be found

equal in all subsequent equal distances. Which was
to be demonstrated.

By the same argument, bodies with equal velo-

cities, and equally distant from the centre, will be

equally retarded in their ascent to equal distances.

Which was to be demonstrated.

Hence the following Corollary.
Cor. Let C be the centre of force, A the point

from which a body must fall by the action of the

force to acquire the velocity in the curve at V, CD
and C I equal distances from the centre C in the

straight line and curve ; v = velocity at I, C I =
.?*,

F = force in direction I C, then will vv vary as Far;

for v, v, F and x are the same, both in the curve and

straight line. Hence, according to whatever law the

velocity of the body descending in the right line V C
may vary, in the same manner will the velocity in

the curve also vary.

102. Tofind thefluxvmal exprettion for the law of the force,

supposing a body to revolve round afixed centre.

Let y = distance of the body from the centre of



force, p = perpendicular upon the tangent, F r=

force, and v = velocity at the distance y ; then t^

1 p
varies as ~r .'. v i varies as * ; but Cor., Art.

yr p

p
101, v v varies as ~Fy, .'. Fy varies as --j and F va-

^
nes as -

.

Or the same immediately follows from Prop. 6,

Cor. 3, for F varies as oxrz x p y
*'

a >

or as

This expression is evidently only applicable
to the

comparison of the force at different points of the same

a* X p
orbit. In general F varies as-.

ply
Ex. 1. Required the law of the force in the hyper-

ay 1 1 1

boKc spiral* Here p = -7 .'. = +
p* y* a*

p y pi*

varies as and F varies as -- or as .

p* f p^y y
Ex. 2. Required the same in the spiral of Archi-

medes. Here p = . .. . /. = - + -

/.

tff+jp p* y*
r

y*'

2p ^fry 2y
'

p 25* 1

^T
= -T + r-i

' F _^ ^ or as - - + -.

y y ^y y ^
jbx. 3. Required the same in the involute of a cir-

cle. Let r = radius of the 0, then by the nature of

the curved = y* _ P, /. =--
Q
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y
as -r.

*x

l&x. 4-. Required the same when the square ofthe ve-

locity is proportional to the logarithm of the distance.

1 p 1

Here vz .1- log. iu .'. j _L- log. y, .". 3 JL!
-

:^ /} ^ /M 3 *V
^^

71

the force .*. is repulsive, and varies inversely as the

distance.

103. The squares of the velocity of bodies revolving in any

curve, are in thejoint Ratio of the accelerating forces, and chords

of curvature.

V*
For F :/::

----
:

-
-, /. V* : * i: F X P V :

P V p v

f "X- PV.

104. To compare the velocity in any point of the curve, with

the velocity of a body revolving ix a circle at the ta-me distance.

Let F andybe the forces in the curve and O ; V
V* t;*

and v their velocities ; then F : f'.'.~
-

: : but
P V p v

since the distances are equal, F = /.'.
- -- = -

IV pv
and Vs

: tr :: PV : p v.

Cor. Letj/ = distance from the centre of force,

p = perpendicular on the tangent, then if for P V,

p r, we substitute their values, we shall have V* : v*

2 p y if p

p
^ y "y'v'

105. If
'

body revolve in a curve of any kind round a centre of

force, to compare the Z,
r
velocity of the perpendicular upon the

tangent, with that ofthe radius vector.

Let P, Q (Fig. 8 ) be two points in the curve in-

definitely near to each other, to which the tangents
P Y, Qy are drawn ; let fall the perpendiculars S Yr



123

upon the tangents P Y, Qy, and from P and Q
draw P C, Q C perpendicular to the curve at P and

Q, which will meet in C the centre of curvature:

then since P C, Q C arc respectively parallel to Y S,

yS, the Z P CQ = Z YSj/; hence Z r

velocity
of perpendicular : Z r

velocity of distance II Z. Y S^
QP QT

:Z PSQIIZ PCQ: ZPSQII- : II

CP PO
^p : II SP : PO II 2SP: PV i: 2j/ :

P p y
Cor. Hence, and by Art. 104-, Va incurve : V*

in at the same distance II Z r

velocity of distance :

Z r
velocity of perpendicular ; and .*. the velocity in

the curve = velocity in the at the same distance,

when the Z r

velocity of the distance = the Z r
velo-

city of the perpendicular.

106. The angular velocity in any curve is as the area described

in a given time directly, and the square of the distance inversely.

Let P S Q, p s q, (Fig. 57) be two indefinitely
small Zs; A and a the areas described about S and s

in the same given time, then Z. 1
velocity about S : Z. r

angular velocity about s II ZPSQ : Z psq'.~
QT qf SP.QT sp X qt mf

A a

~&
'

7p
'

SP3
sp*

'

!3Pa
*

sp*
Cor. In the same curve A = a, .". Z r

velocity 33
1

dist.
*

1 07. To find the variation of the paracentric velocity in any
curve.

Let PQ (Fzg. 58) represent the velocity in tlui

curve; draw QT perpendicular to S P, then \\ill

P T represent the velocity towards the centre; to find



which, put SP =y, SY = p, then SP : P Y
1

SP

108. Required the rate at which the linear velocity decreases

in any curve.

Let SP=.y, SY = j7, w = velocity in curve at P,
1 P P

then since v _L. , _^. or v _:__ : from the
^ jD* J9

a

equation to the curve get a value of p in terms ofyt

p
and consequently a value of - in terms of y and y ;*

but *-X :j,::PTor^: QT =

pyy = S P x Q T = area described in a_
= 1, .'..y

= _~L_;given time = 1, .'..y
= _~L_; substitute this va-

_
lue ofy in the proportional equation, v ^___ , and the

. P*

thing required is done.

1O9. Required the rate at which the r
velocity decreases in

any curve.

Let represent the ZJ velocity, then a H -j .*.

3/ ^
_i_ or 2^ ; but by the last Art.

3/
3

"

Sr

P>* ifP*^ ^



110. Supposing a body to revolve about a centre

offeree, and the motion in the curve to be resolved

into two, one in the direction of the radius vector,

and the other perpendicular to it, it is evident that

that part of its motion, which is perpendicular to the

radius vector, will give the body a tendency to recede

from the centre. This tendency of the body to re-

cede from the centre, in consequence of its rotation

round it, is called the centrifugal force, and the space

by which it thus recedes, in an indefinitely small

given time, is the measure of this force.

Thus let P Q (Fig. 57) be an arc described in an

indefinitely small given lime, S the centre of force ; re-

solve P Q into P T and T Q, and with S as centre

and 8 Q as radius describe the circular arc Q x. Now
since P Q represents the whole motion of the body,
P T will represent that part of it which is towards the

centre ; and by this alone the body would be found
at the distance S T from the centre at the end of the

given time ; but in consequence of the motion T Q
perpendicular to S P, it is really found at Q at the

end of the given time, and at a distance from the

centre = S Q or S x. In consequence .'. of the per-

pendicular motion T Q, the body has receded from,

the centre through a space = T x> which .*. by the

definition is a measure of the centrifugal force.

111. Strictly speaking the term force applied to

this tendency of a body to recede from the centre in

consequence of its rotation round it is inaccurate ; it

being merely the effect of that property in all matter

of preserving in its rectilineal direction; it is .'. de-

nominated a force merely because we must employ a

centripetal force to balance it, just as we suppose a

resisting vis inertia? because we must employ force to

move a body.
112. From the above definition of a centrifugal

force it follows (1) That if a body revolve in a circle,

the centripetal and centrifugal forces are equal ; for

T P (Fig. 59) is the space through which the body
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recedes from the centre in consequence of the per-

pendicular motion T Q, and .*. represents the centri-

fugal force; also PT taken in a contrary direction

represents the effect of the centripetal force .'. &c.

Or the same conclusion may be deduced from con-

sidering lhat the body always continues at the same
distance from the centre, and .'. through whatever

space it must recede from the centre in consequence
of the centrifugal force,' through the same space must
it approach the centre in consequence of the centri-

petal. (2) That if a body revolving in any curve

come to an apse, it will, after that, approach to, or

recede from the centre, according as the centripetal
is greater, or less, than the centrifugal force. For
let P Q (Fig. 60} be the curve, P the apse, P A a

described with S as centre and S P as radius, and
which falls without the curve P Q ;

then by con-

structing the figure as before, we shall have T .T to

represent the centrifugal force, and P T the centri-

petal* but since S A is greater than S Q, P T is

greater than T .r, /. e. when the body approaches the

centre from an apse, centripetal force is greater than

centrifugal, .*. conversely, &c.

But it P A (Fig. 61) falls within the curve, /. e.

if the bodyrecedes from the centre, T x is greater than

P T z. e. centrifugal force is greater than centripetal,
/. &c.

Or the same conclusion may be deduced from con-

sidering that since the whole motion towards the

centre is the effect of the centripetal force, and the

whole motion from it the effect of the centrifugal, the

body must approach to, or recede from the centre

according as the first is greater or less than the se-

cond. (3) That if the body be not at an apse, z. e. if

the direction of the body's motion be oblique to the

radius vector, the body's approach to, or recess from,

the centre, does not depend upon the centripetal force

being greater or less than the centrifugal ; for in this

case P T (Fig. 62) = Py + y T = P.y + Q R,
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t. e. the motion directly towards the centre is made

up of the motion Q R in that direction arising from
the action of the centripetal force together with that

part of the tangential motion represented by Py
which is in the direction P S ; hence in consequence
of this tangential motion the body may approach to

the centre S, even though the centrifugal force be

greater than the centripetal, as is represented in the

figure, and the contrary. (4>) That in all cases the

centrifugal is equal and opposite to the centripetal
force of a body revolving in a circle at the same dis-

tance and with the same Z.
r

velocity; for if x Q re-

present a circular arc described in the same given
time in which the arc P Q is described, x T will be a

measure of the centripetal force in that circle, but T x
ha* been shewn also to represent the centrifugal force

of the body revolving in the curve P Q.

115. The centrifugalforce in different points ofdifferent curves

it proportional to the square of the area described in a given time

directly, and the cube ofthe distance inversely.

For centrifugal force at P (Fig. 57) : D. at p'.:

..QT* qf
1

..SP'XQ'P sp**qf
A X X "~r ~ T ~"~~ -~*~-

~
i
~'r - *~ L --- .

^
-

i-
- _ .-,

SP sp SP3

sp*
A* a*

Dist. 3 Dist. 3

Cor. In the same curve A = a, i. e. in different

points of the same curve, the centrifugal force varies

1

as '

Dist. 3

114. To compare the centripetal and centrifugal forces in any
curve.

Centripetal : centrifugal force ! '. Q R : T x \ '.

PQ1 QT* SP* SY*
-

:
- \\ : (by similar A S

),

''

PV 2SP PV 2SP k J

2 SP3
: SY* X PV.
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Cor. From this proportion may be deduced many
of the conclusions in Art. 112. For instance, in cir-

cular orbits centripetal force = centrifugal; for in

that case centripetal : centrifugal fence : : 2 S PJ
:

S P* X 2 S P :: 2 JS P3
: 2 S P3

. Also if at an apse
centripetal force bs greater than centrifugal, the body
will approach the centre : for centripetal force : cen-

trifugal :: 2 S P3
: S Y* X P V; i. e.at an apse ."

2 S P : P V, .". if centripetal force be greater than

centrifugal, 2 S P is greater than P V, or S P greater
than i P V

;
hence if P B (Fig. 63) be the curve,

P O = 4 P V, and if a PC be described with

centre S and radius S P, it will fall without the of

curvature P A, and .*. also without the curve P B,
*. e. the body will approach to the centre, and the

contrarv.

PROPOSITION VII.

Note* to Prop. 7.

115. If A = the whole area of the circle, and a
r= area described in a given time, we have, as in

Art. 91, the centripetal force to vary, in general, as

a3 X A V* A* x A V*
or as L . which is true

SPS X PVJ SP'PV'xP/F
for different 0s having the same or different centres

of force.

116. If the centre offeree S (Fig. 64) be without

the circle,
-
7^ p

'

^3

wnich expresses the law of

the force, is positive, while the body moves from B
through P to A ; but at A and B, P V vanishing,
the force becomes infinite. From A through V and P'

to B, P V lying the contrary way to what it did in
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the superior part of the orbit, the expression for

the force becomes negative; the centre .*. repels the

body.
117. To prove the Prop, fluxionally, let S P (Fig.

55) = y,PV = c9 SY =p, PF = b s then PS.
SV = AS. SB = some constant quantity, s= a*,_ a* + y
7. e.yX c y = a*, .*. c --

. Also by si-

y

milar AS y : p II b :- /. p =
y b

, _a11

a* +y3
*y v-

as - . as

y X a* + y y X c3

118. By Arts. 103 and 104-, the velocity in the

curve HI- ; and the velocity in the curve at
S P. P V

P: velocity in at same distance :: P V : SP.
If S be in the circumference of the 0, the R. be-

comes that of 1 : V ~%~f

119. By Art. 11 4. Centripetal force : centrifugal!!
2 SP. AV* : PV3

.

Notes to Prop. IfCor. 2.

120. If the periodic times be not equal, then neither

are the areas described in a given time round the two
centres equal; .'. in that case, by Art. 115, F round

RP*. SP SG3

S : F round R : :
- -==i : --=-

;

P. T. round S P. T. round R*
since A V* and the whole areas are the same in both
cases.

121. Suppose R (Fig. 65) to be in the centre of
the circle, and S to be at V in the circumference ; to

compare the forces round each centre, the periodic
times being the same. Since the whole areas and

R
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periodic times are the same in both eases, F -r.

, .'. F. round R : F. round V I :

SP.*PV 3 RIVPT*
I 1 1

: : ,_ :: p v5 * A V5
.

PT* PV*

PROPOSITION VIII.

Notes to Prop. 8.

CP*
122. Since F HI-- , and that S P5

2PM* X SP*
Is infinite, it might be inferred that force was infi-

nitely small; the contrary however will appear from

the general solution. For, in general, F varies as

Q R. tf 4 a* V*. S Y*

SP*QT*
; but V* =

SY~> V
^ = "T"'

Now let b = velocity in direction A C, which is con-

stant (Art. 125), /. V* : 6* :: P R* : Q T2
:: S Ps

6SP* 6a SP* SY*
; SY* .'.V3 = ----- andfl5 =- X

S Y* S Ys 4

QR.a CPa &S SP

o p| 3
a finite quantity when PM is finite.

123. By Art. 103, the velocity in the' curve at P
_ 1

124.* By Art. 114, centripetal force at P : centri-
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fogal :: 2 S P3
: SY* X P V !! 2 S P X C P t

PMa X P M, i. e. centrifugal force is nothing, as

also appears frojn the definition of a centrifugal force

in Arc. 110.

125. To find the fluxional expression for the law

of the force, supposing this force to act in parallel
lines.

Let A B (Fig. 66) = x, B P = y, P T = x, T R
=

jjr,
b = velocity in the direction A B, which in the

same curve will be constant, since the force in the

direction of the ordinate does not affect the motion
of the body in the direction of the abscissa : v = ve-

locity in the direction of the ordinate B P, and F =
force in the direction PB; then x : y II b : =
by by b3

yy
r /. v = and v v

: ; but v v -L. Yyx

l?yy V y y
.*. F X y -i. T-- and F is as-- or as-- s

& ic* x*
or if P Q be an arc described in an indefinitely small

given time x is constant, and F ZI y.

QR
Or thus. By Prop. 6, F 31 ^ but T*..M

PQor PT - /. F IZ -, or a6

yx~jf
^
---

as oefore,

126. To prove the Prop, fluxionally, put P M =
x x

y, C M = x :. y = *'

i* a* and y =

xx
x x X y x*

x x ^ x x y y x* y

,~~7~
=

y~
-

y-

' "
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SCHOLIUM.

Introductory Article to Scholium.

127. Lemma. Let P O (Fig. 67) be the diameter

of curvature ofthe conic section D P L, C the centre,
C D the conjugate diameter produced to meet
P O in F, then will P O ^ P A 3

.

1 1 2CD*
F<* CD ZI--'. C D* is as - and -

PF PF* PF

or P O as -- ; but by conies PA ZT ----'.PA*
PF3 PF

1

is as ---
^
and P O as P A 3

.

Cor. If the distance betwixt the foci of the ellipse

increase, P O still ZI P A 3
; if .'. this distance become

infinite or the ellipse migrate into a parabola, P O
ZI P A 3

, and hence the Prop, is general

Scholium.

128. Let L P D be any conic section, P V the

chord of curvature perpendicular to the axis, then

QT* : PR* :: PM* : PA*
Q T* PR*

'OR :

Q-R
orPV::PM* : PA*

but P V : PO :: PM : PA
Q Ta Q T* P O

S P.* QT
X PM3 ZI (by Art. 127) P M3 /. - Z!

Q R
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The same Jluxionalty.
In parabola y* = 2 ax .'.

j/?/ ax and
j/

r=

.r ay x a* ,r* y aa

-/. y = = - /* F ZI 4 as
-

1

as
y.

____
In ellipse and hyperbola 3/ = X V^ __,^ .*.

b xx b xx V" xic

if X . ^^. rr > X- 12 "~ X 9" Va_ a a a*

= X " ~ = X

f z
--

;
but since y* = .

aa ~<r
*

_ ** x fi*

Z: -- -- and F 2T

or

PROPOSITION IX.

Introductory Article to Proposition 9.

129. The curve which cuts all its radii, drawn
from a fixed point, in a given 9 is called the '

Equi-

ingular Spiral/
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From this definition it follows (1) That if the ra-

dius vector revolve with a uniform angular velocity

round the centre, in other words if the arcs a, /3, 7,

J, * &c. (Fig. 68) described with a given radius

18 *, and .'. measuring the Z 8
at the centre, increase

in arithmetical progression, the Radii themselves will

increase in geometrical progression. For let the

equal Z s A S B, B S C, C S D, &c. be taken in

tlicjirst place indefinitely small, then since the Z s at

B, C, D, &c. are equal to each other, and also the

Z s at the centre, the figures SAB, SBC, S C D,
&c. are ultimately similar A S

, .*. S A : S B 1 1 S B :

S C : : S C : S D : : &c. ; but if quantities be in

geometrical progression any equidistant terms in the

series are also in geometrical progression ; take .*.

&, &' y*i y1 ^' &c - (Fig> 69) equal to each other, but of

finite magnitude, then will S A', S B', S C', S D', &c.

be equidistant terms of the former series S A, SB,
S C, S D, &c. they are .'. also in geometrical progres-

sion, or S A': SB':: SB': SC'::SC': Siy::&c.

(2) That the Z. 5 at the centre are the measures of

R s
. of the corresponding radius vectors ; for by the

last S A' : SB' :: SB' : SC' .'. SC' : S A' \\ SB'a :

SA" .'. the R. SC' : S A' is double of the R. SB'
: S A', f . e. if arc V be taken double of ', the R.
SC' : SA' is double of the R. SB' : SA'; in like

manner it may be shewn that if S' be taken triple

of * ff, the R. S D' : S A' is triple of the R. S B' :

SA7

&c. hence the arcs <* #, a y, a. S' &c. or the Z s
at

the centre represent the comparative magnitudes of

the R *. of the coresponding radii ;
and .*. if & be

assumed to represent the magnitude of the R. S B' :

S B'
S A' or of the R. - -

: 1 ; / will represent the
S A'

S C'

magnitude of the R. S C' : S A' or - '-
: 1 ;

* y the
o A

siy
magnitude of the R. : 1 &c. in other worcfc

o A
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SB'
if & be assumed to be the log. of r-

^
d yt will be the

o A
S C' S D'

log. of -, a, I' the log. of , &c. and from this
o A. o A

property it is that the spiral is frequently called the

logarithmic spiral. (3) That the velocity with which
the radius increases at any point is in proportion to

the magnitude of the radius at that point ; in other

words that the fluxion of the radius is as the radius

itself; for taking the Z s at the centre indefinitely
small as in the 1st case we have SA : SB :: SB :

SC/. SA: SB:: SB SA (BF): SC-SB(C
G) ; but the ultimate R. of B F : C G is that of the

fluxion of S A to the fluxion of S B ; .'.SA. : S B I :

fluxion of S A : fluxion of S B and so for the rest.

(4) That the chord of curvature to any point of the

spiral is double the radius vector at that point ; for

let S (Fig. 70) be the centre of the spiral, P Q an

indefinitely small arc; from Q and P draw Q O, P O
perpendicular to the curve at Q and P respectively,
which will meet in O the centre of curvature; take

P V the chord of curvature passing through S, and

join V Q, then since the Z O Q A = Z O P Q,
take from these the*equal Z

s S Q A, SPA, and the

remainder the O Q S = the remainder the Z
OPS, and the Z s

at C are vertical Z s

,
.'. Z COP

= Z Q S C, but Z P O C being at the centre is

double the Z P V Q at the circumference, .*. also. Z
PSQ=2ZPVQ;butZPSQ= Z PVQ-f
Z S Q V, /. Z SV Q = Z S Q V and S Q or S P
= S V, .'. P V = 2 S P.

Prop. 9.

130. Case 1. Let P Q,^ q (Fig. 11) be two indefi-

nitely small arcs, and let us suppose in the first place
the Z P S Q to be a given Z, t. e. that the Z P S Q
= Z_pS q, then since the Zs at S, P. and R are

respectively = the Zs at S,p and rt the remaining Z
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S Q R = remaining Z S q r : .*. the figures S Q R P
and $qrp ; QRPTandqrpt; Q PTandqpt;
S P Q and Sp q are respectively similar to each other,
and .'. have their homologous sides proportional, .".

qf SP*.QT*
-::QT:qt::QP:qp::SP:spt

.:-
q r RR
S*. (it*

:

*
. :: S P3

: S^3 :: F. at p : F. at P.

qr
Case 2. Suppose the Z P S Q not to be = Z

p S q ; make in that case the Z P S T = p S ft
Tr* qp

then by the first case -
: I : S P : S p; but

*? qr
Q R : it ? : : Q P* : <r P*, j. <-. by similar AS. : : Q T*

ra Q T* Q T*
<?
t*

: r> --- = ^ /. ^ :
A_ :: S P : S p

*? QR QR qr
as in the first case ; and this is the meaning of New-
ton's expression,

" if the Z. P S Q is in any way
changed."

131. To prove the Prop, fluxion ally put S P = y,
S Y = p ; then p : y in a given R. \ '. m : n, .". p =

1 n* p n2 1

my, and - =- .*. -- = - ^_ .

p* m* y* p* y m^y
3

y
1

132. By Arts. 103 and 104 the velocity in the

curve HI and velocity in curve = velocity in a
SP

O at the same distance.

1 33. By Art, 1 1 4-, centripetal force : centrifugal

:: S P* : S Y* ::~7ad.* : 'sin. Z S PY*, and ,'. in a

constant R. in the same spiral.
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PROPOSITION X.

Notes to Prop. 10.

134*. To make the Prop, general^lct A = whole

area of ellipse, a = area described in a given time,

and P = periodic time, then bv Art. 91 we have in

Q R X a*

general the centripetal force -i- - or as
OJr . v^ JL

Q R X A* a*

; i. e. in this case _i.- X
SP>. QT* x P AC*. CB*

_AC*.CB> PC PC
P C, or __ - x - - -i.-. Both which

A C*. C B* P* P*

expressions are general, and true for bodies moving
round different centres.

135. If different bodies revolve round the same

centre, then at equal distances the forces will be equal:
a* tf

hence ^ or must be constant, .'. when
xV \^ V^- x3 .A.

different bodies revolve round the same centre, the

force
~

C P.

136. Let
<f> represent the absolute force, then ac-

a*

celerating force -i_ p x PC_i_ v- X PC/. <p
~

137. To prove the Prop, fluxionally put a = ^
axis major, b = ^ axi* minor, y C P, p =
P F = perpendicular on the tangent, then fi* =s

a* b1 1 o + 6* y* p*
.

_
.

a" +4* y p
"

a' b* a' If p3 y
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V*
138. F ~ P C, or as- /. Vs 31 P C x P V,

CD*
as P C X -, as C D* /. V 31 C D ; this is true

A C
for bodies moving in the same or different orbits

round the same+common centre. But it" bodies re-

o*
rolve round different centres of force F ^. - x

A*
V* a

P C, or as
<f> x PC; also F IZ - - /. V IZ - x

P V A
C D,-or as ? x C D.

1 39. Velocity in ellipse : velocity in at the same

1
aistance :: v - : ^ITcTP /. C D : C P.

i-< i

Car. Hence the velocities in the ellipse and circle at

the same distance are equal in four points of the el-

lipse. For through the extremities of the major and
minor axes (Fig. 72J of the ellipse draw tangents
which will form a rectangle. Join G C, H C, which

produced will pass through I and K, since A F and
H K, A B and H K are similar parallelograms, and
.". about the same diameter; draw B M, which is bi-

sected in L, consequently B M is nn ordinate to the

diameter P II; also B M is parallel to H K, /. Q D
is a conjugate diameter to P 11

; and since 2. B C P
= Z BCD, CP = CD = CR = CQ, /.the

velocities in the ellipse and at the points P, D,
R, Q are equal.

140. Centripetal force : centrifugal '.' PC4
; AC.*

C Ba
. Hence these forces are equal when P C* =

A C, C B or when the distance from the centre is B

mean proportional between the two ^ axes of the el-

lipse.
To find this point geometrically ; from C M

(Fig. 73) cut off C D = C B ; on D A as diameter

describe a D E A, produce C B to meet it in E,
and with C as center and C as radius describe the
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P P" E ;
then will the centripetal force be = the

centrifugal at the points P, P', P", P'"; for join C P
then C P (= C E* = A C. CD) = A C. C B, and

the same may be proved of the other points.

Prop. 10. Cor. 2. .

14-1. That the periodic times in two similar ellipses
round the same centre are equal appears from Cor.

8, Prop. 4. That they are also equal in two ellipses

having a common axis major appears from hence : let

E and e be two ellipses having a common axis major;
A A' AC. CB

then P. T. in E : P. T. in e '.:- : ::
-

a a! a

AC.C6 CB Cb
: II - :

--
, but the areas described

a' a of

in a given time IZQ P X S Y, as velocity X perpendi-
cular ; (ifwe suppose the bodies at A) as the velocity, .*.

CB Cb CB
P. T. in E : P. T. in ell :

'

C B
Cb

: 7 ; since the velocities are as the | conjugates, t. e,

in this case as the \ axes minors.

Hence the periodic times in all ellipses round the

same centre are equal ;
for let E and e be any two

ellipses; describe the ellipse f. similar to^, and on the

same axis major with E , then P. T. in e = P. T. in

c because they are similar ; and P. T. in f = P. T.
in E because they have the same axis major, /. P, T.

in e - P. T. in E
Or both cases of the above Corollary may be thus

A A C. C B AC. CB
proved. P. T -, as^ - ~Xc. CB

1 or is constant. If the absolute forces be diUer-
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cut or the bodies move round different centres P. T.

^L _
A_' CB _A C. C B

~~^~'
as

velo.Xi>crp.'
as ~ ""A* as

1

Tf-



NOTES TO SECTION III.

PROPOSITIONS XL XII. and XIII.

Notes to Props. 11, 12, and 13.

142. To make the above Props, general, let a =
area described in a given time, then, by Art. 91, we

_ Q R X a
have in general the centripetal force to *

SP*.

a*
i. c. in this case _^ _ , which expression is

L X SP*
general for bodies moving round different centres of

force.

143. If different bodies revolve in conic sections

round the same centre, then when they are at the

same distance from it, the forces will be equal, .*.

j~ must be constant, or & HI Lf ; consequently in

1

this case the force IZ. o~T5a-

144. Let
<f> represent the absolute force, then ac-

<f>
a? a*

celerating force m
^-^

31 ^^ QTU >

'

9 ^
and a IZ LA x pi.



14-5. To prove the Prop, fluxionally, we have in

the ellipse p* = V X
; in the hyperbola20 y

y
h* X -

; and in the parabola p* = a y :

2 a + ^
1 2 a 1 1 2 a 1

11 ^- = ", .'. F - - _^
(in all the three cases)

p* ay p*y

L x

PROPOSITION XIV.

Prop. 14.

146. This Prop, is only applicable to different

bodies moving round the same common centre. To
make it general, let

<f>
= absolute force, then we have

QT*
L -i. ultimately, but Q R ultimately varies as

v^ IV

the accelerating force when the time is given, ;. e.

9 S P*. Q T^ ^5I
" L ^-3

> and s R* Q Ta or a*
o f

HI L X p, and a IZ Lf X pi, which is true for bo-

dies moving round different centres, provided the

force ^Z-, . The same conclusion was obtaintd
Dist.*

in Art.

Nate to Prop. 14. Cor.

14-7. If bodies revolve in ellipses round different
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centres, we have A ~ a X P lil L|x $ X P;
i. e. in general A C. C B m Li. pi. P.

PROPOSITION XV.

Note to Prop. 15.

14:8. This Prop, is only applicable to different

bodies moving round the same common centre. To
make it general, let

<p
= absolute force, then C B

."^ U X A Ci, .'. A C. C B :z Li X A C|, but

(Art. 147) A C. C B n: Li. pi- P, /. LJ. pi. P
~

_ AC1
Li X A CT, .'. P -- -

, which is true for bodies
Pi-

moving in ellipses round different centres.

PROPOSITION XVI.

Note to Prop. 16.

149. This Prop, is only true for different bodies

moving round the same common centre ; to make it

_ S P. Q T _ a L| X p|
general we have V _i_ 2! _i_

SY SY SY
which is applicable to bodies moving round different

centres of force.

Prop. 16 Co*. 4.

L 2 A C SBC*
150. For V* : tr* :: : :: L :

B C* A C* AC
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: .' L : L "
1 : 1 } and .'. since the velocitfes in

s HI
1

. , the velocities of bodies revolving in ellipses
** dist.

round a common centre will at the mean distance 31
1

Prop. 16. Cor. 6.

150. For in different points ofthe same curve V HI
1 1 1

;
/.in parab. V 1^ --- -- ~

'>
in the elliPse

=p

. .

1 1

and hyperbola V . Z^ :
-

= ^ V -

Now in the ellipse, as S P or the denominator of this

fraction encreases or decreases, H P or the numera-
tor decreases or increases ; consequently the fraction
TT p ,

-- will vary more than the fraction-, and /.
SP SP

the velocity will vary in a higher R. than "^ -
;

but in the hyperbola," as S P encreases or decreases,
H P also encreases or decreases ; consequently the

HP 1

'

fraction --- varies less than the fraction , z. e.

S P S P

the velocity varies in a less R. than
-

Prop. 16. Cor. 7.

4 S A
152. For in the parabola V* :

SP. SA
2 S P
sp

"
2 : i, /. V : v :: VT: i

; in the ellipse
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2 SP

BC.

""
: L In hyperbola v :

C+ SP : c::

V 2 + - -
: 1 : : V iT+T

: 1. Hence also velocity
A. \j

in parabola = velocity in at ^ the distance. For

V : v :: V ~2~ : 1

& v : velocity in 0r. i S P : : 1 ;
^ 2

.*. V = velocity in radius JSP

But in ellipse V : w :: ^2
&u: P. in 0r. |SP:: 1 ;

.'. V : u. in 0r. J S P : : ^ITH '

^~2
.". V is less than velocity in 0r. i S P

And in hyperbola V : I
' ** 2 + : 1

& v ; velocity in 0r. |.
S P : : 1

^ 2_
/. V : velocity in r. i S P : I ^2+ : ^"2
.". V is greater than velocity in 0r. k SP.\

Prop. 16. Cors. 8 and 9.

153. For let V = velocity in the conic section at

the distance S P ; v = velocity in a at the distance

of | the latus rectum ; and if = velocity in a at

the distance S P ; then since the latera recta in the

conic section and first are equal
V : v 1 1 i L : S Y, which is the 8th Corollary,

T
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again v : if'.'. ^SP : *$L,
.'.V : if :: ^LxSP : S Y, which is the 9th

Corollary.

DEDUCTIONS FROM THE PRECEDING PART OF
THIS SECTION.

154. Of the LINEAR velocities of bodies revolving in

conic sections, the centre offorce being in thefocus.

1. Required a general expression for the velocity of bodies re-

volving in any of the conic section*,

(1) In parabola V* ZZ F X P V m - X 4- S P

(2) In ellipse and hyperbola V* .i. F X P V H
2SP. PH_;?x PH

5 AC "AC. SP
Or the same may be deduced from Art. 14-9, by

substituting for L and S Y in the proportional Equa-

,. v _ L^xp^
tion V _^

g-y
.

Cor. 1. If different bodies revolve round the same

centre, p is constant ;
.'. in parabola V IZ - -=. j

v S A

__
and in ellipse and hyperbola V -^ / .

A C/. IS ir

Cw. 2. In different points of the same curve we
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1

have in parabola V -i- ^ ;
and in ellipse and

IIP
hyperbola V -^.

2. To compare the velocity in a come section with the velocity

in a circle at the same distance.

V HI V P V, .*. velocity in conic section 4 velocity

/2~Cl)> _
in at same distance '.'. V A r*

" * ^2 S P **

AC -

Or the same may be demonstrated as in Prop. 16,
Cor. 7.

Cor. I. Hence velocity in ellipse = velocity in a
at the mean distance ; for in that case H P = AC;

the same is also shewn in Prop. 16, Cor. 4.

Cor. 2. Hence also the same conclusions may be
deduced as those given in Prop. 16, Cor. 7.

3. To compare the velocity in any point of the ellipse with the

velocity at the mean distance.

V
g Y*

*'* ve^oc^y m ellipse : velocity at mean

distance::-

4. If a body revolve in an ellipse ; required the point where the

velocity is an arithmetic mean between the greatest and least velo-

cities.

Let D and d = greatest and least distances, p
perpendicular upon the tangent at the required point;

^ 1 1 2 2Dd
then by the Profc^ + d - - ~> '-P = D 4^

=
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- = L, or at the required point the perpendicu-
a
lar = the latus rectum ,-

to find when this is the

I* f~x- A*
case we have p = = I X A/- ,

.'
-- =

a v 2 a x a*

If
1 x 2al?

.'. x =
2 x a 31 + I*

5. If a body revolve in an ellipse ; required the point where

the velocity is a geometric mean between the greatest and least

velocities.

1 1 1

Here X = , :.p
t = D d = Ir and p = b;D d p*

i. e. the required point is at the extremity of the

minor axis, or at the mean distance.

6. Required thepoint in the parabola, where the decrement of the

linear velocity is a maximum.

By pursuing the method given, (Art. 108) we have

1
1

y
v 31 -- 31 y , .'. t IT - -

; but by that Art y =
P y\

py ai#T fli y y^
y a 1 a

which is a maximum by Prob. ;
.*. - or .

4 y 5 ay 5a
is a maximum, .'. =o,or <y= .

v y
5

y
6 *

7. Required the same in the ellipse.

1 (^~a y C^CL . . _2fl--^V~
!

~~P"~
V
~~T~

'

IT
J
T ' x

lay _ lay
b { -^y*jf- =

7
A

'

yi */^~r
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-,
. . v varies as

V2 ay
^2 ay f ft* 2 ay y*--ft*

.* . ...

- = maximum, .*. -7 or
y*V2a y. 2 a y
1 ft* 4 y= maximum, .".

^ r ' 2
,, 5-

10 a ft* y .y
6 I? y y

8 a* + 3 ft*. y-~- 5 aft* = o,- from whence .r may
be found.

8. Required the point in the parabola, where the paracentric

velocity is a maximum.

By Art. 107, Paracentric velocity
~ 2r~"P^

j

. py
...i- v* ay ' . if y
.. in this case -: = maximum, .TI r

1 a
or = maximum, .'. y = 2 a, z. e. the re-

y y
quired point is at the extremity of the latus rectum.

9. Required the tame in the ellipse and hyperbola,

Vj* p>
Paracentric velocity -: ^ -

, which by Prob.

py
y*p* 1 1

is a maximum, .". or = maximum,

1 2 a 1 1

. e. , or + = max-
ft* y y ft

3
y ft* y

ft*

imum, .*. y = = J fotas rectum.
a
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155. Of the ANGULAR velocities of bodies revolving

in the conic sections ;force tending to thefocus.

1. Required a general expretiion for the angular velocity of

bodies revolving in any of the conic sections.

Let a = area described in a given time, then Z r

a L X fI
velocity _^_

- - ^_ .

S P* S P
Cor. 1. If different bodies revolve round the same

L|
centre, <p is constant, .'. Z r

velocity _^ .

S P*
Cor. 2. In different points of the same curve Z r

1

velocity 3 I .

2. 7\> compare the .*
velocity in a conic section with the *

velocity in a at the same distance.

Z.* velocity IH - -HI (since the distance is the

same) L, .*. Z* velocity in the conic section : Zr

velocity in a at the same distance 1 1 Li : 2 S P^

fX* : S~P*.

Cor. Hence Zr velocity in the conic section =
Zr velocity in at the same distance at the extremity
of the latiis rectum.

Z. To compare the Lr
velocity in any point of the ellipse with

the mean Lr
velocity.

If a circle be described with the focus of the ellipse

as centre, and radius = A C or mean distance, the

periodic time in this circle will = the periodic time

in the ellipse, hence the uniform Z r
velocity in this

O will represent the mean Z r
velocity of the body

L|
in the ellipse; .*. since Z* velocity ^-

, we have
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Zr velocity in any point P : mean Zr velocity

(or Zr velocity in radius = mean distance) '.'.

s P* AC* SP* AC.CB
Cor. Hence the Zr velocity in the ellipse = mean

Zr velocity when S P* = A C. C B, or when the

distance from the focus is a mean proportional be-

tween the J axes of the orbit.

4. To compare the 1} velocity at the mean distance with the

mean .
r
velocity.

Zr velocity at mean distance : mean Zr velocity r:

C B : C A.
AC* AC*
Cor. Hence the Z r velocity at the mean distance

is less than the mean Zr velocity.

5. The Z r
velocity round the higher focus of an ellipse of

small excentricity is nearly uniform.

Take Pp (Fig. 74) an indefinitely small arc,

join PS, pS, and P H, pH; from P draw P
perpendicular to Sp produced, and Pm perpen-
dicular to Hp t

- then because the Z Ppm =
Z SpB = Z Ppn, and that the Z s

at n and
m are right Z s and Pp common, .*. Pw = Pm ;

Hence Z r

velocity round S : Z' velocity round

Pn Pm
H!IZPSt):Z Pfi.pl'. :

PS P H11 1 1

: :: - -
:

-
; but the Zr ve-

SP PH SP* SP.PH

locity round S is represented by ,
.*. the Z*

velocity round H is represented by -^ or
* SP. PH
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by
-

, which quantity, if the ellipse be of small

excentricity, will be very nearly constant.

6. Required the point in the ellipse where the *
velocity it an

arithmetic mean between the greatest and least Z.
r
velocities

Let D and d = greatest and least distances, x =
1 1

required distance ; then by the Problem ^ + ^ =

2 2D* ff 2b*
, .'. a* = - = -. But D* -f d*

a* D + d* D* + d*

+ 2 D d = 4 a*, .'. D* + eP = 4 a* 2 D d =
2 4 #*

4 a* 2 Z>*, .'. a* =
, and

4 a* _ 2 6* 2 a* 6*

7. Required the point in the ellipse where the r
velocity it

a geometric mean between the greatest and the least.

1 1 1

Here X =
, .". a* = D d, and .r =

8. Required the point in the parabola where the decrement of
the Z.

r
velocity is a maximum.

By Art. 109, the decrement of the Z.* velocity 1L

y
, which by Problem is a maximum, .".

py*
y> p* 11 11-

, or --
, or --

-o- is a maxi-
f-f p*f / ay> f

Sa
mum, .*. y = z~ .
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9. Required the tame in the ellipse.

Let^=SP, = PH; then as before -
^

1 v 1

is a maximum, or
-

is a maximum. /.

y ** y y
* y i) 1 h* vy

6
y 8y y v 7 v---

}- =r ot or-
y &*

= o; but v = 2 a ^, and i> = ^r,
.*. by

6*

7flj/ + 4-^*=o; from which equation y may be

found.

1 56. Of Centripetal and Centrifugal Forces in the

Conic Sections, the centre offeree being in thefocus.

1. Required a general expression for the centrifugal force in

the conic sections.

Let a = area described in a given time, then cen-

., . r _ * _ L X 9
tnfugal force -j_ _i. .

S P' S P3

Cor. 1. If different bodies revolve round the same
L

centre, <f>
is constant, .". the centrifugal force -i. .

Cor. 2. In different points of the same curve, cen-

trifugal force m .

SP3

2. To compare centripetal and centrifugal force* in the come

sections.

(1) In parabola; centripetal force : centrifugal::
2SP3

: S Y x PV::SP : 2SA::SP : |L.
u



(2) In ellipse and hyperbola ; centripetal force :

centrifugal : : 2 S P3
: S Y. P V : : 2 S P3

: B Ca
.

S P 2 S P. P H B C*
. x ::SP :

- ::SP : L.PH AC AC
Cor. Hence centripetal force = centrifugal at the

extremity of the latus rectum.

3. Force in any come section : force in circle at the same dis-

tance, and moving with the same /J velocity : : S P : i L.

For by Art. 142, farce I-I IZ (since the
L X SP*

Z r
velocity and distance, and consequently a are

the same in both cases) , .*. force in conic section :

Lt

force in O at same distance, and moving with the

same Zr velocity '.'.
--

: '.'. S P : i L.
L 2SP

Or the same may be deduced from the last Exam-

ple; for the force in the at the same distance, and

moving with the ame Z* velocity, is equal to the

centrifugal force in the curve, but it has been shewn
that centripetal force : centrifugal II S P : L,
/. &c.



MISCELLANEOUS PROBLEMS TO THE
TWO LAST SECTIONS.

1. Required ike Ratio of the quantities of matter m planets

which have secondaries revolving round them.

Let <p
= absolute force = quantity of matter in

primary ; D = i axis of the ellipse described by the

secondary, or = mean distance of the secondary
from the primary, P = periodic time of the second-

D 3 D 3

ary; then by Art. 148, P* ZI /. <p
H -

; <f>

<p p*
D 3

may .*. be assumed = ; from whence we shall

get the quantity of matter of the several planets in

proportional N s
.

2. Required the Ratio of the densities of planets which have se-

condaries revolving round them.

Let d = density of the primary, r = radius of

primary, s = sin. of the Z. under which r appears at

the distance D to radius unity; then since density IZ

quan. Mr
<f>

D 3 r3

, we have d _^_ r- _^. 57 r-
;
but -fjT" =

magnu r3 P*. r3 D3

1 1

s3 ,
.". d _L_ -p^ j-; assume .*. d = -pa f, and we

JL o I S

shall get the density of the planets in proportional
N. *

3. Required the Ratio of the weight* of equal bodies on the sur-

faces ofplanets having secondaries revolving round them,

The weight of any body ~- quantity of matter X ac-
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celerating force ; .*. since the bodies are equal by sup-

position, the weight will be as the force with which

<f>
D 3

the planets attract it, /. c. weight _t-~
-
j- ~pa~~i,

or HI d X r. This will also give the R. of the

spaces fallen through in 1" at the surface of the pla-
nets ; for space HI accelerating force, when the time

is given.
Note. The density, &c. of planets, which have not

satellites revolving round them, can only be found by
observing the effects which those planets produce
upon the other planets in disturbing their motion.

4. How mutt the force be changed in an ellipse, to make a body

move in a parabola.

V* 1

F - py -^ (in this case wheie V is given) p~y5

2 S P. P H
.". F in ellipse : F in parabola

' *

4> S P : j^
:: 2 AC : PH.

5. Ifann part of the earth were taken away, what change

would be produced in the moon's orbit, and in what R. would her

periodic time be encreated, the moon 1

* orbit before the change be-

ing supposed circular.

Since F HI , the new orbit will be one of the

conic sections, the centre of the earth being in the

focus. Let .'. A P Q (Fig. 75} be the original, and
ARM the new orbit, and let the change take place
when the body is at A ; then since the original orbit

is a , the point A will be an apse of the conic sec-

V* 1

tion ARM. Now F _L. - _i_ (in this case) -:

PV PV
.*. force before change or (1) : force after (1 )

'.'.
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^

2 C Dl 2 C D*
-- :2SA, i. e. n: n 111- .'2 SA ::

AC AC
2 S A. S M- :2SAi:SM:AC::2AC-AS:

AC
A C; /. A C = ?

. S A. Now (1) let n = 2,
n 2

/. e. let J the earth be taken away, then will A C
be infinite, or the curve in that case will be a para-
bola. (2) Let n be less than 2, i. e. let more than

the earth be taken away, then will A C be finite

but negative; .". curve is an hyperbola. (3) Let n be

greater than 2, or less than J the earth be taken

away ; then will A C be finite and positive, or the

curve in that case will be an ellipse, whose | axis

n 1

major = - . S A. To find the changem the peri-
n 2

odic time; we have P HI i ax.
maj^i 4>

*

P. T be-

~P"
_,

fore change: P. T. after:
SA *

_
2^ : nj. n 1 ; which R. is only real and finite

when n is greater than 2, or when the curve is an
ellipse.

Cor. In the two last cases ax. min.* = A S . SM
n

= AS.AM-AS= . SA.
n 2

6. Supposing the velocity with which a body would revolve in a
circle at the earth's surface to be given ; what must be the velocity,

the direction continuing the same, that the excentricity of the orbit

may be 100O miles.

Let A P Q (former figure) be a great of the

earth, ARM the ellipse described by the body, S the
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centre of the earth or focus of the ellipse, S C the

excentricity ; put A S = r, S C = a, V = velocity
in A K M at A, v = velocity in A P Q at A; then

V*
since F -^ -

-, and that F is the same at A in both

2 CD*
cases, V* I^PV; hence Va :t^:: : 2 SA ::

2SA. SM
: 2 S A I : S M : A C 1 1 2 a + r : a + r,

. ,T / 2 a + r
/. V = v V- Z

a 4- r

Cor. If a be infinitely greater than r, or the path

of the body be a parabola V = v *%.

7. Centrifugalforce at the equator, anting from the earth's

rotation round itt axis : the centrifugal force in any parallel of

latitude : : rod. *
: cot. latitude *, supposing the eart/t a perfect

sphere.

Let P p (Fig. 76; be the earth's axis, ^E Q the

equator, A B any parallel of latitude, and take Q D
and B n proportional to the centrifugal forces at Q
and B ; revolve B n into B m and m n, then will B m
represent that part of the centrifugal force at B which

R
diminishes the force of gravity ; then since F -i-

IE (since P is here given) R, we have

QD:Bni:CQ:AB:: rad. : cos. latitude

And B n : B m : : C B : AB:*. rad. : cos. latitude

.'. Q D : B ra :: r* : cos. latitude
2

.

Cor. 1. Hence, since QD and r* are constant, the

diminution of gravity, or that part of the centrifugal

force which diminishes gravity, in going from pole to

equator, HI cos. latitude *.
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Cor. 2. In what latitude does centrifugal force =
1 th

the centrifugal force at the equator. Here i* :

cos. latitude
z

II m: 1 , .*. coa. latitude = V m

8. Required the velocity of the earth round its axis, that the

centrifugalforce in lot. 6O may =force of gravity there.

Let V = required velocity, C = centripetal force

or gravity, c = centrifugal force at equator, c' =
V*

centrifugal force in latitude 60 ; then since F ~ -

we have
C : c : : 2 m r : V*

but c : (/ '.'. rad. *
: cos. latitude *

1 1 4 : 1

/.T) : S : '. 8 m r : V*7"buTC = d by hypothesis,

/. V = ^ 8mr.

9. Required tofind how the weight of the same body varies on

different parts of the earth
j
s surface.

Let P = time of the earth's rotation round its

axis ; p = periodic time of a body revolving at the

earth's surface; S = cos. latitude; C = centripetal
force or force of gravity ; c = centrifugal force at the

equator ; d centrifugal force in any other parallel
of latitude; then

C : c :: : :: P3
: p

3

p* P*

& c : <f

& C : C (/ (or comparative weight) '. I rad.
z Ps

: rad.
* P* p*. ^*

; but the 1st and 3d terms are

constant, .". weight H. rad.* P* p
2

. 9*..
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Or thus. Let r = radius of the earth, then since

F IZ V* when R is given
C : c : I V* : v* : : 2 01 r : v

& c :</ :: radL^ : y
/. C : d : : rad. * 2 m r :

& C : C cf (or compar. weight) 1 1 rad.
* 2 TO r

:

rad7*_2_jw
r S* if

.'. weight ZT rad. * 2 m r S* w*.

Cor. To compare the force of gravity in any two
latitudes.

Let C = cos. of latitude in one of the places, c =
D. at the other, then since force of gravity by last

Cor. 1C. rad.
3 2 m r *

tf t where ^ = cos. lati-

tude, gravity at one place : gravity at the other I 1

rad.
s 2 m r C* if : rad.* 2 m r <? v*t or ::

radT* P3
p* C* : rad* P* p* c*.

10. Required the Ratio of the lima of oscillation of a pendu-
lum in any two given latitudes, supposing the earth a tphere.

Let C and c be the cosines of the two latitudes, T
and t the times of oscillation of the pendulum at those

latitudes, P and p as in the last Prob. , then since

time of oscillation IE . ______ , when the length of the

pendulum is given, we have by Cor. Prob. 9. T :

/:: ^nuT* P* ? e- : ^radT* p* p C*.

Cor. If the two places be the pole and the equator,

we have c = cos. = rad., and C = cos. 90. =

0; /.T : t t: P*-^ : P-

1 1 . In a given latitude a pendulum will otculate once in a tecond,

supposing the earth not to revolve round itt axit .'Required the

I* motion round its arit that the pendulum may oscillate once in

two seconds.

Let v = required velocity round its axis; c = cos.
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latitude; F = force of gravity at 1st, or when the

earth is at rest \f = force of gravity when it revolves

round its axis ; then since time of oscillation 21 ,V F
when the length of the pendulum is given, 1 : 2 I '.11
-7=: T=-V F ^f

rad.

--
rad. a 2 T r (by Cor. Prob. 9) ;

.*. rad. * m r =
3 rad. *

TTC r
4 rad. * m r 2 cz v* t

.'. v*
' '

, and v

12. Supposing a pendulum in latitude 60 to oscillate seconds,

when the earth revolves round its axis with a velocity of v feet

per second ; required the velocity of the earth round its am, that

the pendulum may oscillate once in two seconds.

Let V = required velocity, then, as before, com-

parative gravity ZZ rad. * 2 m r Sa
c-* -L (in this

case where Latitude = 60.) 8 m r tr*,
.*. 1 : 2 : :

7= = v= :: V7 : *I1 " Tm-T=v-- VT

m r v*
;

.'. 8 m r if
1 = 32 m r 4- V*, and V =

r -f- a*~~
IS. If a body is set rollingfrom B (Fig. 77) down Me quadrant

B^PD, with the velocity acquired in falling through the given

space A B ; to determine the point where it will leave the quadrant,

and the point where it will meet the horizontalplane.

When the body leaves the quadrant it will describe

a parabola, let it leave the circle in P; then P is a

point both in the parabola and circle, and P B D is n

circle ofcurvature to the parabola at P, since PvtE
X
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Vf
; Hence velocity at P = velocity acquired in

I?

falling down kih of the chord of curvature or P F ;

but it also rr velocity down AB + BE;.*. A B -f-

PF BC BE BC 2AB
B E = --- =--

;
.'. B E =-22 3

= vers. sin. of arc described.

Again, from A draw A N parallel to the horizon,
which line is the directrix of the parabola Pp; make
Z S P x = Z N P*, and P S = P N, and S is the

focus ; with S as centre and A C as radius, describe a

circle cutting the horizontal line Cp in p ; p is the

point required. For Sp = C A =p<y; .'. p is a

point in the parabola.
Cor. If A B = B C, B E = o, or the body will

fly off in a tangent at B ; if A B be greater than

5 B C, then B E is negative, i. e. ver. sin. is negative,
or the Prob. is impossible.

14. Suppose a body to begin to movefrom the point C (Fig. 78) of

the cycloid A C P ; tofind the point where the body will leave the

curve.

Let P be the point required ; then as before (since

P F = chord of curvature of cycloid, and .'. of

V*k
parabola since P V n

)-,
PF or ED = BE,

i. e. A D
AD + AB

- -

2

15. A body whirled round by a string C A (Fig. 79) in a verti-

cal plane jutt keeps the string extended at A ; required the pro-

portion of the tension of the string at B to the weight of the body.

By the Prob. the centrifugal force at A is just =
the weight of the body, and .*. the velocity at A is =

AC
that acquired in falling through D A =-

; also

i. e. A D A E = A E A B, /. A E =
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the velocity at B = that acquired through DA+AB
5 AC

or ;
.*. since centrifugal force -i. V*, when r

&

is given, *. e. H space fallen through ; centrifugal
force at B : centrifugal force at A, or weight of the

body, '.'. 5 : 1 ; but the tension of the string at B is

made up of the centrifugal force at B together with

the weight of the body; .*. tension of
string at B:

weight of body, '.16: 1.

16. If a body suspended by a string oscillate through a quad-
rant (the extremity of the quadrant being the lowest point) ; to

compare the tension of the string with the weight ofthe body in any

point of the descent.

Let P (Fig. 80) beany point of the descent, W =
whole weight of the body, 10 = that part of it which
is employed in stretching the string, C = centrifugal
force of the body at P, and x = sin. Z, P A B to

radius r. Then
W : : : P E : P D : : r : x

V* * m x
C : W :: : 2 m :: : 2 m :: 2 x : r

r r

.'.C : TO : : 2 : i

& C + 10 or tension at P : w '.I 3 : 1

but to : W :: x : r

.*. tension at P : W : I 3 x : r.

Or thus. Let gravity or the weight of the body be
2 m x

represented by 2 m , then w = -
; also centri-

V* 4 mx
fugal force upon the same scale = = -; .'.

6 m x
C -f 10 = tension atjP = ; ;

.*. tens. : weight

6 m x
~

'. 2 m '

3 x : r.
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Cor. Hence the tension of the string at the lowest

point = three times the weight of the body.

1 7. Required the same in the cycloid.

Let gravity or the
weight

of the body be repre-
sented by 2

ffz, and put D G (Fig. 81} = a, and D F
= x : then 27:w::DG:DE:: D G* : D~F*

2 m x$'
I a\ : xs .'. "jo

-
; also C upon the same

"z

V* 4 m x
scale =

j
= ~~ = 2 m

;
.'. C -f- ty or ten-

2 m x\ a\ + x\
sion at P =r

-
i + 2 m 2 m X-\ ;

a% a?

a? + xl
tension at P : weight '. .* 2 ?.-j- : 2 m .' I a\

Co/' At the lowest point, tension : weight 112 : 1.

18. Let AP (Fig. 82) be a slender rod in theform of a curve,

whose axis NA is perpendicular to the horizon, and let a ring be

put upon it at any point P ; suppose the rod to revolve about A N
with such a velocity that the ring may remain at rest at P ; re-

quired the nature of the curve A P, that the ring may also remain

at rest at every otlier point of the rod.

Draw P T a tangent to the curve at P, put N P
= yt T N =: subtangent = /, V = velocity of the

rod at P ; then if gravity be represented by 2 ?, we

have centrifugal force at P =- = suppose to P
^7

V*
D ; .".
-

: that part of the force which urges the
>y

V*
body up the rod, or P E : I P T : y, .*. P E = p ;

again, gravity, or 2 m = PC: that part of it which
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urges the body down the rod, or P B I : P T : t ;
.*.

2m t

P B = -rT ; but since the body remains at rest, P E

V2 2 m t
'

B, i. e.
p-y

= ~pr and V = V2m
in like manner if p be any other point, the velocity

necessary to make the ring rest at^= ^2 m X t n\
.*. in order that the body may remain at rest both at

P and p, velocity at P must be to velocity at p '.'.

N :
*

t n : but velocity at P : velocity at p '.I

P N : p n ,- .'.in order that the body may remain at

rest both at P and p, T N must be to t n '. : P N* :

p nz
, or the subtangent must be as the square of the

ordinate, i. e. the curve must be a parabola.
Cor. Hence if a vessel of water revolve about its

axis, the cavity formed in the fluid by the revolution

of the vessel will be a paraboloid ;
for every particle

of the water forming the surface of the cavity re-

mains at rest by the supposition, and .'. by the fore-

going Prob. must lie in the surface of the paraboloid.

19. The curve AB P being a parabola, and the rest at before;

let it be required to find the proper velocity with which any point

P must revolve, that the ring placed at P may remain at reft.

Let x = space fallen through by gravity to ac-

quire the required velocity ; then as before we have

V* 4 m x 2m X TN
P E = r = r and P B =

2;X2AN kmx

A N, or the body must fall through a space equal to

the abscissa of the curve.

TN
Cor. If A P be any other curve, x = ~ J or

the space fallen through must = i the subtangent.
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20. A cylindrical vessel isfilled with water ; with what velocity

must it be whirled round its axis that \ the water may be throivn

out.

By Cor. Prob. 18, when the cylinder is turn-

ed round, the surface of the water in the vessel is a

paraboloid ; and since the cylinder is full at first, the

quantity of water thrown out will always be equal to

the content of the paraboloid thus formed : now the

greater the velocity of the cylinder, the greater will

be the quantity of water thrown out ; *. e. the lower

will the vertex descend ; and since by the Prob. just
half the water is thrown out, the cylinder must be

whirled with such a velocity that the vertex of the

paraboloid may descend till it just touch the bottom

of the cylinder ; for in that case the quantity of water

thrown out = the content of the paraboloid inscrib-

ed in the cylinder =r ^ content of the cylinder. Let

F A M (Fig. 83^ be the surface of the water ; then

since after it has assumed this position it is supposed
to remain at rest, any particle as P is at rest. Let

x = space fallen through to acquire the velocity of

rotation at P ; then by preceding as in last Prob., x

=r A N ; and for the same reason the velocity of a

particle at M, or the velocity of the cylinder = velo-

city acquired down G A or the height of the vessel.

21. A cylindricalvetsel ofa given magnitude itfilled with water ;

with what velocity must it be whirled round its axis, that the water

may just cover 1 the base.

Let A B C D (Pis- %*) be the cylinder, A m n B
the cavity formed in the water, let the paraboloid
A m L B be completed, and put H L = x, H G =
A, then A B* : m n* : : L H : L G I : x : x h ; but

by Prob. A B* : m n* '. I 2 : 1
;

.'. 2 : 1 : 1 x : x h,

and 2 : 2 1 (1)
'' x : h, .'. x = 2 h ; hence by

proceeding as in the last Prob. we shall have the ve-

locity of a particle remaining at rest at B, or the ve-

locity of the cylinder = that acquired in falling down
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22. A frustum of a cone of given dimensions, and having its

smaller end downwards, is Jitted with water ; with what velocity

must it revolve round its axis, that all the water may be expelled.

Let A M N B (Fig. 84) be the frustum ; then in

order that all the water may fly out, the velocity of

the vessel must be such that the fluid would, if per-

mitted, form itself into the paraboloid A B N L M
circumscribing the frustum ; put A B = a, M N =
bt L H = x9 and H O = h ; then a* : 6* : : x : x

a* h

h, and a* : a* V1
\ \ x : k, .". x r= a =

space fallen through to acquire the velocity sought.

FINIS.

T)>ir},am : Printed ly F, HutnM and Co,, fir Baldwin, Graded, % Joy, London,



ERRATA.

Page 32, line 4, for by Lem. 12, read by Conies

63, 15, after and insert hence.

65, Lena. 4, for DBF read /f E, and for

read Pp T.

98, line 4, for Cc read c C, also in line 8.

99, 28, for C G read G C.

102, 10, for varies read va;;*/.

113, 5, for 2 .R read Q. R.

Id. 20, for 5Pa
: S Y- read 5 Y* : SP

121, 4, for Fy read T-'j/.

124, ult. for y read ^.

125, 31, for preserving read persevering.

131, 24, for x .r
j/ read a: x y.

a* X b- or X i-

133, 10, for 3 read ?

y .?/

148j 19, for v read r>.
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